

A MEMBER OF THE ESTUD GROUP

USER MANUAL

About this Manual

Purpose

This manual provides the information required for the Selection, Wiring, Connection, Settings, Trial Operation, Tuning and Functions of the DX3 Servo Drive (referred to as **DX3**).

Read and understand this manual to ensure correct usage of the product.

Terms and Abbreviations

Terms that may be used in this manual are defined as follows.

Term	Meaning	
Motor	A Rotary Servo Motor.	
Drive	A Servo Drive, which is used for controlling the motion of Rotary Servo Motor.	
Servo System	A Servo Control System that includes a Servo Motor, a Servo Drive with a host controller and peripheral devices.	
Servo ON	Supplying power to the Motor.	
Servo OFF	Not supplying power to the Motor.	
ESView The Engineering Tool for setting up and tuning Servo Drives or a computer in which the Engineering Tool is installed.		

Abbreviations that may be used in describing EtherCAT or CANopen are defined as follows.

Abbreviation	Meaning	
APRD	Auto-increment Physical Read	
APWR	Auto-increment Physical Write	
APRW	Auto-increment Physical Read/Write	
ARMW	Auto-increment Physical Read Multiple Write	
BRD	Broadcast Read	
BRW	Broadcast Read/Write	
BWR	Broadcast Write	
CiA	CAN in Automation	
CoE	CAN application protocol over EtherCAT	
DC	Distributed Clocks	
EEPROM	Electrically Erasable Programmable Read Only Memory	

Abbreviation	Meaning	
ESC	EtherCAT Slave Controller	
ESI	EtherCAT Slave Information	
ESM	EtherCAT State Machine	
FMMU	Fieldbus Memory Management Unit	
FPRD	Configured Address Physical Read	
FPWR	Configured Address Physical Write	
FPRW	Configured Address Physical Read/Write	
FRMW	Configured Address Physical Read Multiple Write	
LRD	Logical memory Read	
LWR	Logical memory Write	
LRW	Logical memory Read/Write	
OD	Object Dictionary	
OP	Operational state of EtherCAT state machine	
PDO	Process Data Object	
PREOP	Pre-Operational state of EtherCAT state machine	
RxPDO	Receive PDO	
SAFEOP	Safe-Operational state of EtherCAT state machine	
SDO	Service Data Object	
SyncManager	Synchronization Manager	
TxPDO	Transmit PDO	

Abbreviations that may be used in describing data types and ranges are defined as follows.

Abbreviation	Data Type	Range
INT8	Signed 8 bit	-128 to +127
INT16	Signed 16 bit	-32768 to +32767
INT32	Signed 32 bit	-2147483648 to +2147483627
UINT8	Unsigned 8 bit	0 to 255
UINT16	Unsigned 16 bit	0 to 65535
UINT32	Unsigned 32 bit	0 to 4294967295
STRING	String value	(reserved)

Symbols

The symbols that may be found in this document are defined as follows.

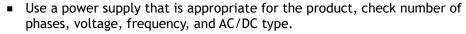
Symbol	Description	
DANGER	Indicates a hazard with a high level of risk that, if not avoided, will result in death or serious injury.	
WARNING	Indicates a hazard with a medium or low level of risk which, if not avoided could result in minor or moderate injury.	
CAUTION	Indicates a potentially hazardous situation that, if not avoided, could cause equipment damage, data loss, and performance degradation, or unexpected results.	
IMPORTANT	Indicates precautions or restrictions that must be observed. Also indicates alarm displays and other precautions that will not result in machine damage.	
NOTE	Provides additional information to emphasize or supplement important points of the main text.	

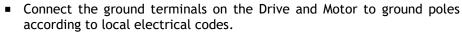
The names of reverse signals (ones that are taken effect when low) are written with a forward slash (/) before the signal abbreviation. For example:

$$\overline{S-ON} = /S-ON$$
 $\overline{P-CON} = /P-CON$

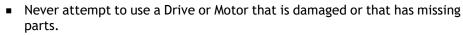
Parameters are referenced as PnXXX where XXX refers to a unique number. Some parameters have multiple functions encoded within a single parameter. For these parameters, sub-indices are used to reference the multiple functions.

For example:


- Pn112 Speed Feedforward is a single value without any sub-indices
- Pn000 Basic Function Selection 0 is made up of 4 sub-indexes describing different functions
 - Pn000.0 Servo ON
 - Pn000.1 Forward Drive Prohibit Input (P-OT)
 - Pn000.2 Reverse Drive Prohibit Input (N-OT)
 - Pn000.3 Reserved parameter (Do not change)


Safety Precautions

General Precautions


- Never remove covers, cables, connectors, or optional devices while power is being supplied to the Drive.
- Never connect a three-phase power supply to the terminals U, V, and W of the driver.
- Wait for five minutes after turning the power supply OFF and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work.
- Never touch the power supply terminals after turning OFF the power supply while the CHARGE lamp is lit, because high voltages may still be present in the Drive.



- Never damage, pull on, apply excessive force to, place heavy objects on, or pinch cables.
- Never attempt to disassemble, repair, or modify the product.
- Make sure that the device in an emergency stop state at any time when the product has been connected to the machine and ready for the operation.
- Never touch inside the Drive.
- The Drive heat sinks, regenerative resistors, Motor, and other components can be very hot while power is ON or soon after the power is turned OFF. Implement safety measures, such as installing covers, so that hands and parts such as cables do not come into contact with hot components.
- For the control power supply, use a power supply device with double insulation or reinforced insulation.
- Never use the product in an environment that is subject to water, corrosive gases, or flammable gases, or near flammable materials.

- Install external emergency stop circuits that shut OFF the power supply and stops operation immediately when an error occurs.
- In locations with poor power supply conditions, install the necessary protective devices (such as AC reactors) to ensure that the input power is supplied within the specified voltage range.
- Always use a Noise Filter to minimize the effects of electromagnetic interference.
- Always use a Motor and Drive in one of the specified combinations.
- Never touch a Drive or Motor with wet hands.

Storage Precautions

- Follow all instructions on the packages, and never place an excessive load on the product during storage.
- Never install or store the product in any of the following locations:
 - -- locations that are subject to direct sunlight.
 - -- locations that are subject to ambient temperatures exceed product specifications.
 - -- locations that are subject to relative humidity exceed product specifications.
 - -- locations that are subject to corrosive or flammable gases.
 - -- locations that are subject to dust, salts, or iron powder.
 - -- locations that are subject to water, oil, or chemicals.
 - -- locations that are subject to vibration or shock exceeds product specifications.
 - -- locations that are subject to radiation.

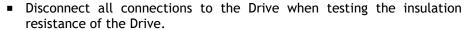
Installation Precautions

- Install the Drive in a control cabinet that provides fire and electrical protection.
- Install the Drive and Motor in a way that will support their mass.
- Never install or store the product in any of the following locations:
 - -- locations that are subject to direct sunlight.
 - -- locations that are subject to ambient temperatures exceed product specifications.
 - -- locations that are subject to relative humidity exceed product specifications.
 - -- locations that are subject to corrosive or flammable gases.
 - -- locations that are subject to dust, salts, or iron powder.
 - -- locations that are subject to water, oil, or chemicals.
 - -- locations that are subject to vibration or shock exceeds product specifications.
 - -- locations that are subject to radiation.
- Never allow any foreign matter to enter a Drive or a Motor with a Cooling Fan.
- Never cover the outlet from cooling fan of Drive or Motor.
- Never step on or place a heavy object on the product.
- Install the Drive in the specified orientation.
- Provide the specified clearances between the Drive and the control cabinet as well as with other devices.

Wiring Precautions

- Never bypass the electromagnetic contactor in the wiring between the Drive and the Motor.
- Firmly connect the power terminal to the Motor terminal.
- Provide an adequate air gap around the Drive installation.
- Use shielded twisted-pair cables or screened unshielded multi-twistedpair cables for I/O Signal Cables and Encoder Cables.
- The wiring length of the encoder is up to 20 meters.
- Minimize the frequency that the power supply is turned ON and OFF.

Operation Precautions


- In order to prevent accidents, please test the Motor with no load (not connected to the Drive shaft).
- When starting to operate on the supporting machine, set the user parameters that match the machine in advance.
- Note that the signals for the Forward Drive Prohibit (P-OT) and the Reverse Drive Prohibit (N-OT) are disabled during JOG operation.

- When overtravel occurs, the power supply to the Motor is turned OFF and the brake is released. If the Motor is used to drive a vertical load, set the Motor to enter a 'zero-clamped' state after the Motor stops. Also, install safety devices (such as an external brake or counterweight) to prevent the moving parts of the machine from falling.
- If not using auto-tuning, make sure that an appropriate moment of inertia ratio is setup to avoid vibration.
- If an alarm occurs, reset it after troubleshooting the cause and ensuring safety.
- Never use the brake of the Motor for normal braking.

Maintenance Precautions

- Never use gasoline, thinner, alcohol, acid or alkaline detergent to avoid discoloration or damage to the casing.
- When replacing the Drive, transfer the user parameters from the replaced Drive to new Drive.
- Never change the wiring while the power is on.
- Never disassemble the Motor without permission.

DX3 Servodrive Product Manual Safety Precautions

Disposal Precautions

When disposing of the product, treat it as ordinary industrial waste. However, local ordinances and national laws must be observed. Implement all labeling and warnings as required.

Contents

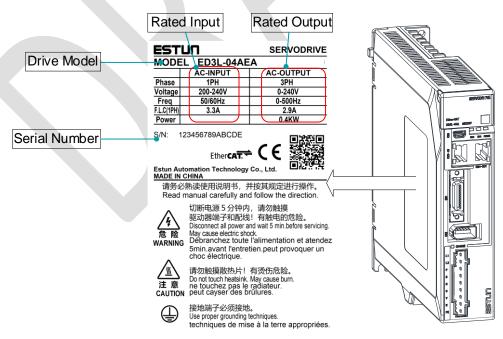
	nis Manual	
Purj	pose	i
Terr	ms and Abbreviations	i
Sym	nbols	iii
Safety P	recautions	iv
Gen	neral Precautions	iv
Stor	rage Precautions	v
	allation Precautions	
Wir	ing Precautions	vi
	eration Precautions	
Maiı	ntenance Precautions	vi
Disp	oosal Precautions	vii
Content	S	viii
	1 DX3 Servo Drive	
-	Product Features	
	Interpreting the Nameplate	
	Model Designations	
	Part Names	
	Ratings and Specifications	
	Dimensions	
	System Configuration	
	Part Numbers	
	2 Installation	
-	Installation Precautions	
	Mounting Types and Orientation	
	Mounting Hole Dimensions	
	Mounting Interval	
	3 Wiring and Connecting	
-	Precautions for Wiring	
	Basic Wiring Diagrams	
	Terminals Arrangements	
	Wiring the Power Supply to Drive	
	Wiring the Encoder	
	I/O Signal Connections	
	Communication Connections	
	4 Basic Settings	
	Panel Operator	
	ESView V4	
	5 Application Functions	
-		
	Power Supply	
	Overtravel Limit	
	Settings for E-STOP	
5.6	Holding Brake	5-1/

5.7 Encoder Setting	5-20
5.8 I/O Signal Allocations	5-22
5.9 Torque Limit	5-25
5.10 SEMI F47 Function	
Chapter 6 EtherCAT Communications	6-1
6.1 Introduction	6-1
6.2 Specification	6-2
6.3 Communication Indication	6-2
6.4 EtherCAT Slave Information	6-4
6.5 EtherCAT State Machine	
6.6 Communications between Master and Slave	
6.7 Relevant Settings	
Chapter 7 CiA402 Drive Profile	7-1
7.1 Gear Ratio	
7.2 Device Control	7-2
7.3 Control Modes	7-6
7.4 Position Control	
7.5 Homing	
7.6 Velocity Control	
7.7 Torque Control	
7.8 Torque Limits	
7.9 Digital and Remote I/O Signals	
7.10 Touch Probe	
7.11 Soft Limit Function	
7.12 Position Comparison Function	
7.13 Absolute Encoder Settings (Fn010, Fn011)	
Chapter 8 Trial Operation	
8.1 Preparations for Trail Operation	
8.2 Inspections and Confirmations	
8.3 Motor Operation without a Load	
8.4 Motor Operation with a Load	
8.5 Program Jogging	
Chapter 9 Tuning	
9.1 Overview	
9.2 Tuning Modes	
9.3 Tuning Tools	
9.4 Feedback Speed Selection	
9.5 Additional Adjustment Functions	
9.6 Vibration Suppression	
9.7 Diagnostic Tools	
Chapter 10 Alarm Displays	
10.1 Alarm Classifications	
10.2 Troubleshooting methods	
Chapter 11 Parameters	
11.1 Interpreting the Parameter Lists	
11.2 Parameters Detailed	
Chapter 12 Object Dictionary	
12.1 General Objects	
12.2 PDO Mapping Objects	
12.3 Parameters Table	12-73

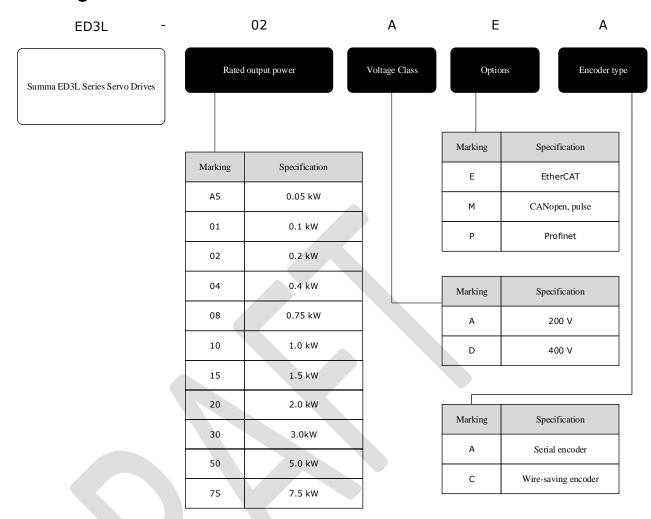
	12.4 Device Control	12-74
	12.5 Profile Position Mode	12-83
	12.6 Homing Mode	12-86
	12.7 Position Control Function	12-87
	12.8 Interpolated Position Mode	12-89
	12.9 Cyclic Synchronous Position Mode	
	12.10 Profile Velocity/Cyclic Synchronous Velocity Mode	
	12.11 Profile Torque / Cyclic Synchronous Torque Mode	
	12.12 Torque Limit Function	
	12.13 Digital Inputs/Outputs	12-94
	12.14 Object Dictionary List	
Rev	vision History	12-1

Chapter 1 DX3 Servo Drive

1.1 Product Features

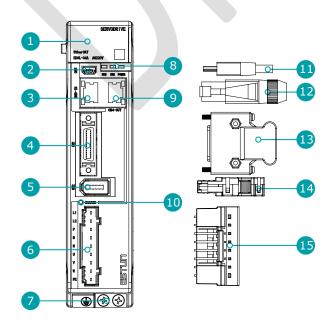

As a new single-axis AC servo product from Trio, DX3 is designed with its excellent performance and practical control functions to create a complete set of solutions with the best cost performance for customers.

Matching with the EM3A and the EMG servo motors, compatible with mainstream controllers, it offers high-speed, high-precision, and high-performance machine solutions.

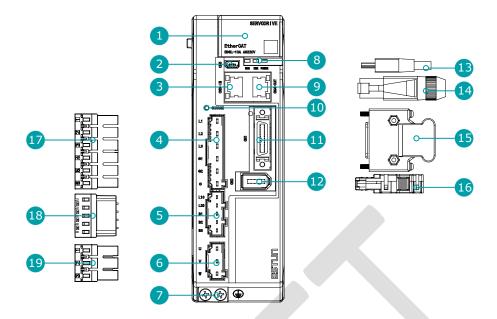

DX3 has the following outstanding features.

- EtherCAT support, update rates down to 125 μs
- Compact size
- Zero stacking gap installation
- 200 V ac from 50 W to 2 kW
- 400 V ac from 1.0KW to 7.5kW
- Optional 17-bit incremental encoder (magnetic) and 20-bit incremental/23-bit absolute encoder (photoelectric)
- Comprehensive tuning technology including: Auto-tuning function, adaptive vibration suppression, friction compensation

1.2 Interpreting the Nameplate



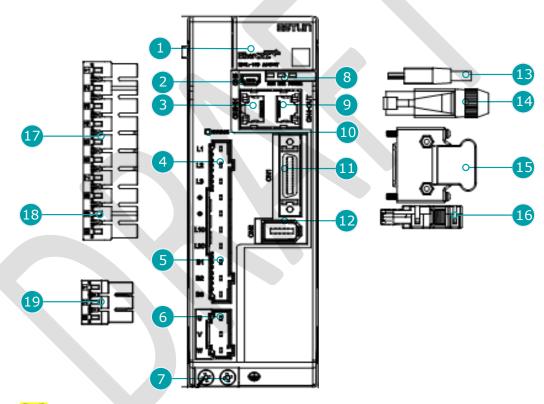
1.3 Model Designations


1.4 Part Names

Rated power from 50W to 400W

No.	Name	Description
1	Panel Operator	A module for Servo status displays and parameter settings
2	USB Connector	Connects a computer for ESView V4
3	EtherCAT Input Connector	Connect to an EtherCAT device
4	IO Signal Connector	Connects to sequence I/O signals
5	Encoder Connector	Connects to the encoder in the Motor
6	Main Circuit and Motor Connector	L1, L2: main power input terminals P, N: common DC bus terminals P, B: external regenerative resistor terminals U, V, W: motor power terminals PE: ground terminal
7	Grounding Terminal	Connects to the ground terminal of the Motor main circuit cable
8	EtherCAT communication indicators	 RUN: running indicator lamp ERR: Error indicator lamp POWER: power on indicator lamp
9	EtherCAT Output Connector	Connects to an EtherCAT device or be vacant
10	CHARGE Indicator Lamp	Note: Even if you turn OFF the main circuit power supply, this indicator will be lit as long as the internal capacitor remains charged. Never touch the main circuit or Motor terminals while this indicator is lit, in case the electric shock.
11	USB Terminals	Standard Mini USB Type-B
12	EtherCAT Terminals	Standard RJ-45 terminal
13	IO Signal Terminals	Connection terminals for sequence IO signals
14	Encoder Terminals	Connection terminals for the encoder cable in the Motor
15	Main Circuit and Motor Terminals	Connection terminals for power input and motor power.

Rated power from 750W to 2kW

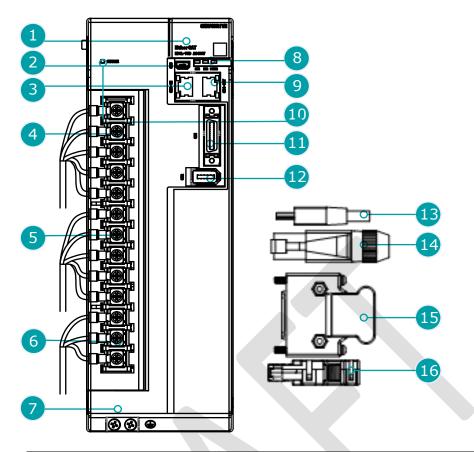


The figure above shows an example of a product with a rated power of 750W to 2kW. Products with a rated power of $2kW \sim 3kW$ are similar in appearance and have the same components.

No.	Name	Description
1	Panel Operator	A module for Servo status displays and parameter settings
2	USB Connector	Connects a computer for ESView V4
3	EtherCAT Input Connector	Connect to an EtherCAT device
4	Main Circuit Connector	 L1、L2、L3: main power input terminals ⊕1, ⊕2, ⊖: DC terminals
5	Control Circuit Connector	 L1C, L2C: control power input terminals B1, B2, B3: external regenerative resistor terminals
6	Motor Connector	Connects to a Motor main circuit cable
7	Grounding Terminal	Connects to the ground terminal of the Motor main circuit cable
8	EtherCAT communication indicators	 RUN: running indicator lamp ERR: Error indicator lamp POWER: power on indicator lamp
9	EtherCAT Output Connector	Connects to an EtherCAT device or be vacant
10	CHARGE Indicator Lamp	Note: Even if you turn OFF the main circuit power supply, this indicator will be lit as long as the internal capacitor remains charged. Never touch the main circuit or Motor terminals while this indicator is lit, in case the electric shock.
11	IO Signal Connector	Connects to sequence I/O signals
12	Encoder Connector	Connects to the encoder in the Motor

No.	Name	Description
13	USB Terminals	Standard Mini USB Type-B
14	EtherCAT Terminals	Standard RJ-45 terminal
15	IO Signal Terminals	Connection terminals for sequence IO signals
16	Encoder Terminals	Connection terminals for the encoder cable in the Motor
17	Main Circuit Terminals	The connection terminals for the main circuit power supply
18	Control Circuit Terminals	The connection terminals for the control power supply
19	Motor Terminals	The connection terminals for the Motor main circuit cable

400VAC, rated power from 1kW to 3kW


NOTE

The figure above shows an example of a product with a rated power of 1kW to 1.5kW. Products with a rated power of 2kW \sim 3kW are similar in appearance and have the same components.

No.	Name	Description
1	Panel Operator	A module for status displays and parameter settings.
2	USB Connector	Socket for USB communication cable when using ESView V4 on PC.
3	EtherCAT Input Connector	Input signal socket for EtherCAT communication cable.

No.	Name	Description	
4	Main Circuit Port	 L1, L2, L3: main power input terminals ⊕, ⊖: DC Connectors 	
5	Control Circuit Port	 L1C, L2C: control power input terminals B1, B2, B3: external regenerative resistor Connectors 	
6	Motor Power Connection Port	Socket for motor power cable.	
7	Grounding Terminal	Connected to the earth terminal of the motor power cable.	
8	EtherCAT Communication Indicator	 RUN: Run indicator ERR: Error indicator POWER: System indicator 	
9	EtherCAT Output Connection Port	Output signal connection port for EtherCAT communication cables.	
10	CHARGE Indicator Lamp	Lights up when the main circuit is powered on. Note: If voltage remains in the capacitors inside the drive after the main circuit has been switched off, and the indicator lamp will be ON, do not touch the main circuit and motor terminals at this time to avoid electric shock.	
11	IO Signal Connection Port	Socket for IO signal connectors.	
12	Encoder Connection Port	Socket for the encoderconnectors of the motor.	
13	USB Connector	Standard Mini USB Type-B.	
14	EtherCAT Connector	Standard RJ-45 terminal.	
15	IO Signal Connector	Connector for IO signal cables.	
16	Encoder Connector	Connector for motor encoder cables.	
17	Main Circuit Connector	Connector for the drive's main circuit cables.	
18	Control Circuit Connector	Connector for the drive control circuit cables.	
19	Motor Power Cable Connector	Connector for the motor power cables.	

400VAC , rated power from 5kW to 7.5kW

No.	Name	Description	
1	Panel Operator	A module for status displays and parameter settings.	
2	USB Connector	Socket for USB communication cable when using ESView V4 on PC.	
3	EtherCAT Input Connector	Input signal socket for EtherCAT communication cable.	
4	Main Circuit Port	 L1, L2, L3: main power input terminals ⊕, ⊖: DC Connectors 	
5	Control Circuit Port	 L1C, L2C: control power input terminals B1, B2, B3: external regenerative resistor Connectors 	
6	Motor Power Connection Port	Socket for motor power cable.	
7	Grounding Terminal	Connected to the earth terminal of the motor power cable.	
8	EtherCAT Communication Indicator Lamp	RUN: Run indicatorERR: Error indicatorPOWER: System indicator	
9	EtherCAT Output Connection Port	Output signal connection port for EtherCAT communication cables.	
10	CHARGE Indicator Lamp	Lights up when the main circuit is powered on. Note: If voltage remains in the capacitors inside the drive after the main circuit has been switched off, and the indicator lamp will be ON, do not touch the main circuit and motor terminals at this time to avoid electric shock.	

No.	Name	Description
11	IO Signal Connection Port	Socket for IO signal connectors.
12	Encoder Connection Port	Socket for the encoderconnectors of the motor.
13	USB Connector	Standard Mini USB Type-B.
14	EtherCAT Connector	Standard RJ-45 terminal.
15	IO Signal Connector	Connector for IO signal cables.
16	Encoder Connector	Connector for motor encoder cables.

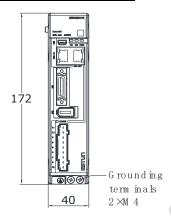
1.5 Ratings and Specifications

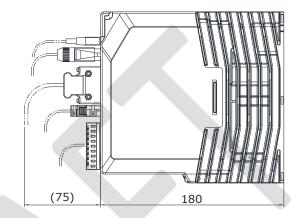
Drive Model: DX3-1			A5AEA	01AEA	02AEA	
Continuous Output Current [Arms]			0.9	1.1	1.5	
	Instantaneous Maximum Output Current [Arms]		3.3	4.0	5.8	
Power Supply	Single- phase		0.2	0.3	0.6	
Capacity [kVA]	Three- phase		-	-	_	

400VAC						
Drive Model: DX3-1	10D	15D	20D	30D	50D	75D
Continuous Output Current [Arms]	3.6	5.0	7.1	12.0	17.0	27.3
Max Output Current [Arms]	10.9	16.3	24.7	37.8	53.0	70.7
Mains Power Equipment Capacity [kVA] (3-phase)	1.8	2.8	3.5	5.0	8.2	12.0

General specifications		Description		
Input Power	200VAC	Single-phase AC 200V~240V, -15%~+10%, 50Hz/60Hz 3-phase AC200V~240V, -15%~+10%, 50Hz/60Hz (rated power ≥0.75kW)		
	400VAC	3-phase AC380V~440V, -15%~+10%, 50Hz/60Hz		
Control Power	200VAC	Single-phase AC 200V~240V, -15%~+10%, 50Hz/60Hz		
Control Power	400VAC	Single-phase AC 200V~440V, -15%~+10%, 50Hz/60Hz		
Control Mode		SVPWM control		

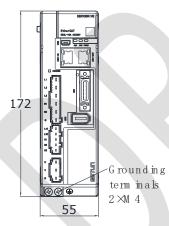
General specifications			Description
Feedback			Serial encoder: • 17 bits absolute magnetoelectric encoder • 17bits or 20bits incremental encoder • 23bits absolute encoder
	Operatio	Temperatu re	-5°C to 55°C (-5°C to 40°C for zero stacking gap installation)
	n	Humidity	5% to 95% (with no condensation)
	Storage	Temperatu re	-20℃ to +85℃
Environmental		Humidity	5% to 95% (with no condensation)
Conditions	Protection	Class	IP20 (in the case of all terminals are installed in place)
	Altitude		1,000 m or less
	Vibration F	Resistance	4.9m/s ²
	Shock Resi	stance	19.6m/s ²
	Power System		TN System
Mounting			Base-mounted
	Speed Control Range		1:5000
			±0.01% of rated speed max. (For a load fluctuation of 0% to 100%)
Performance	Coefficient Fluctuation	nt of Speed on	0% of rated speed max. (For a load fluctuation of ±10%)
			±0.1% of rated speed max. (For a temperature fluctuation of 25°C±25°C)
	Soft Start Time Setting		0 s to 10 s (Can be set separately for acceleration and deceleration.)
	Input Signals		Allowable voltage range: 24 VDC \pm 20% Number of input points: 5
			Input Signals are S-ON (Servo ON), N-OT (Reverse Drive Prohibit), P-OT (Forward Drive Prohibit), PCL (Forward External Torque Limit) or EXT1 (Touch Probe 1), NCL (Reverse External Torque Limit) or EXT2 (Touch Probe 2).
I/O Signals	Output Signals		Allowable voltage range: 5 VDC to 30 VDC
			Number of output points: 3 (1 of them fixed for Servo Alarm)
			Output Signals are TGON (Rotation Detection), ALM (Servo Alarm), COIN (Positioning Completion).
			Except ALM, a signal can be allocated and the positive and negative logic can be changed.
EtherCAT Communicatio	Applicable Communications Standards		IEC 61158 Type12, IEC 61800-7 CiA402 Drive Profile
ns	Physical Layer		100BASE-TX (IEEE802.3)
	Communications		CN3-IN (RJ45): EtherCAT signal input connector

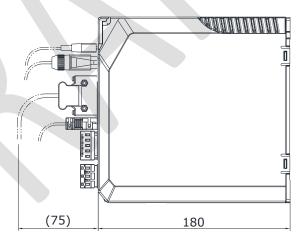

General specifications		Description		
Connectors		CN4-OUT (RJ45): EtherCAT signal output connector		
	Cable	Category 5, 4 shielded twisted pairs		
	Sync Manager	SMO: Mailbox output, SM1: Mailbox input, SM2: Process data output, and SM3: Process data input		
	FMMU	FMMU 0: Mapped in process data output (RxPDO) area. FMMU 1: Mapped in process data input (TxPDO) area. FMMU 2: Mapped to mailbox status.		
	EtherCAT Commands (Data Link Layer)	APRD, FPRD, BRD, LRD, APWR, FPWR, BWR, LWR, ARMW, FRMW		
	Process Data	Assignments can be changed with PDO mapping.		
	MailBox (CoE)	Emergency messages, SDO requests, SDO responses, and SDO information (TxPDO/RxPDO and remote TxPDO/RxPDO are not supported.)		
	MailBox (FoE)	Firmware update by FoE		
	Distributed Clocks	Free-Run Mode and DC Mode (Can be switched), SM2 (SM2 event sync) Applicable DC cycles: 125 µs to 8 ms in 125-µs increments		
	Slave Information Interface	2048 bytes (read-only)		
CiA402 Drive Pro	ofile	Homing mode Profile position mode Profile velocity mode Profile torquemode Interpolated position mode Cyclic synchronous position mode Cyclic synchronous velocity mode Cyclic synchronous torquemode Touch probe function Torque limit function		
FoE (File Over E	therCAT)	Download a new firmware via FoE protocol		
USB	Interface	Personal computer (with ESView V4)		
Communicatio ns	Communications Standard	Conforms to USB2.0 standard (12 Mbps), OTG		
Display		Five 7-segment LEDs		
Indicator Lamps		CHARGE, POWER, SYS, RUN, ERR, L/A IN , L/A OUT		
Panel Operator		4 Buttons		
Regenerative Pro	ocessing	 Rated power from 50W to 400W must connect an external regenerative resistor. Rated power from 750W to 1kW are built-in. 		
Protective Functions		Overcurrent, Overvoltage, Undervoltage, Overload, Regeneration Error, Overspeed, etc.		
Utility Functions		Alarm history, Jogging, Mechanical analysis, Load inertia		


General specifications	Description	
	identification, Auto-Tuning, etc.	

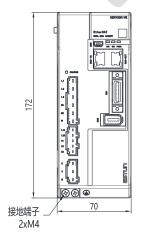
Note: When operating from a single-phase power supply for the DX3-115AEA (rated power 1.5 kW), please deratify to 1.2 kW.

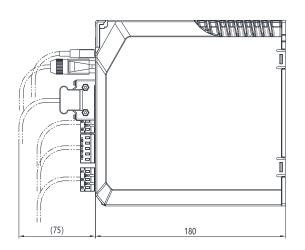
1.6 Dimensions


Rated power from 50W to 400W



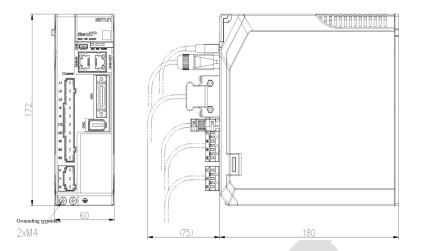
Unit:mm

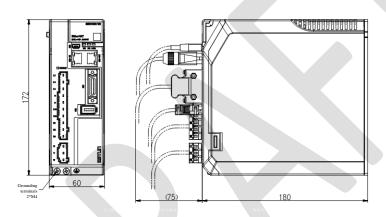

Rated power from 750W to 1kW



Unit:mm

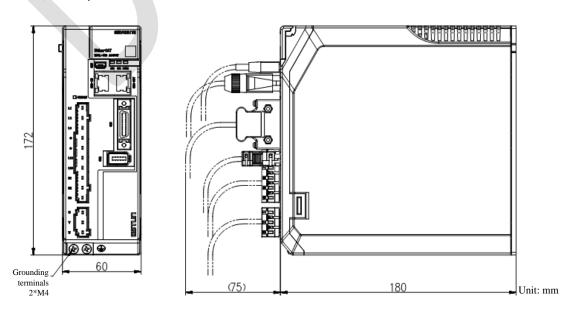
Rated power from 1.5kW to 2kW




单位: mm

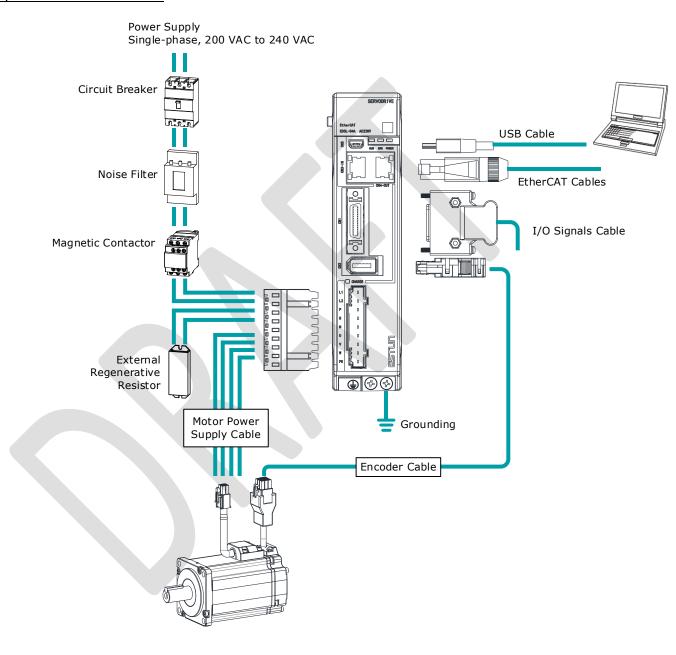
Version: v0.01 (August 2022)

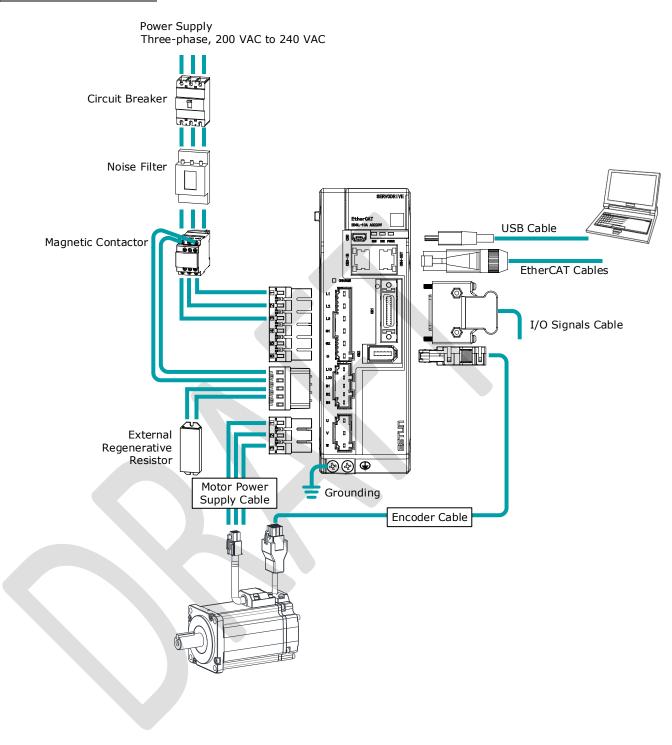
400VAC, rated power from 1kW to 1.5kW



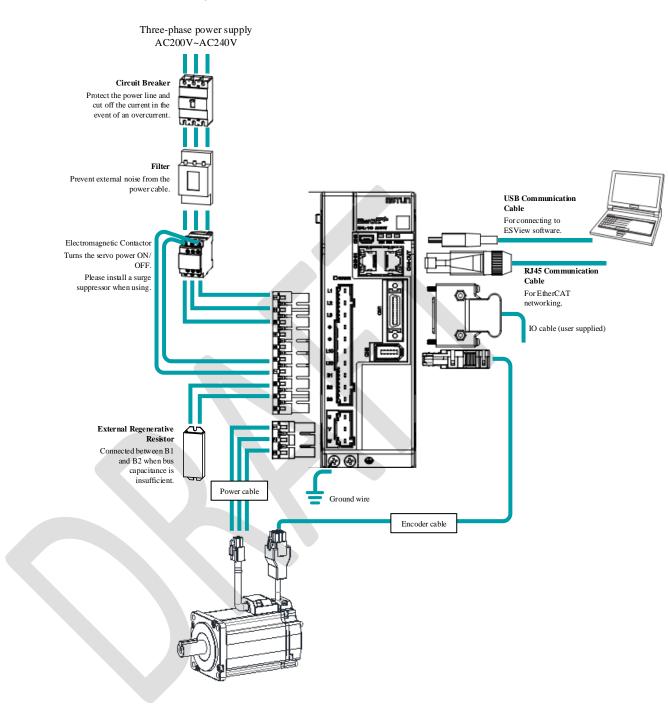
400VAC, rated power from 2kW to 3kW

Unit: mm


400VAC, rated power from 5kW to 7.5kW


1.7 System Configuration

1.7.1 Example Diagram


Rated power from 50W to 400W

Rated power from 750W to 2kW

400VAC, rated power from 1kW to 7.5kW Take a 1kW drive as an example:

1.7.2 Minimum System Configuration

The minimum system configuration includes at least the following components.

Component Name	Description
Power Supply	 Single-phase 200 VAC to 240 VAC, -15% to +10%, 50Hz or 60Hz Note: Single-phase power supply is used for 400W drive.
	 Mains power supply (L1,L2,L3): three-phase AC 200V to 240V, -15% to +10%, 50Hz/60Hz

Component Name	Description
Circuit Breaker	Used a Type C MCB to protect the power supply line and cut off the circuit when an overcurrent occurs. The minimum rated current of the circuit breaker depends on the Drive model.
Noise Filter	Used to prevent external noise interference from the power supply. The rated current is 10 A or 20 A.
Magnetic Contactor	Control the power-on and power-off of the input circuit.
External Regenerative Resistor	When the busbar capacitance is insufficient, remove the short wiring and connect an external regenerative resistor. The minimum value of the regenerative resistor depends on the Drive model.
Drive	DX3 Series Servo Drive.
Motor	Matched EM3A servomotor or EMG servomotor (only for the rated power is greater than or equal to 1kW).
Controller	A device that realizes servo application and mechanical motion programming.
PC software	ESView V4
Cables	Encoder cables, motor power cables, EtherCAT communication cables, IO cables, etc.

Minimum system configuration of 400VAC

The minimum system configuration consists of at least the following components.

Component	Specification
Power supply	Control power supply (L1C,L2C): Single-phase AC AC 220V~440V, - 15%~+10%, 50Hz/60Hz
Power supply	Mains power supply (L1,L2,L3): three-phase 380V~440V, -15% ~+10%, 50Hz/60Hz
Circuit breaker	Please use a Type C MCB to protect the power cord and to cut the circuit in the event of overcurrent.
Circuit breaker	The minimum current rating of the circuit breaker varies with the drive model.
Noise filter	Protection against external noise interference from the power cable, with the current rated at 10A or 20A.
Electromagnetic contactor	ON/OFF control of the input circuit.
External regenerative resistor The minimum resistance value of the external regenerative resistor varies with the drive model.	
Drive DX3 Series Servo Drive.	
Motor	Suitable for use with EM3A servo motors or EM3G (at rated power ≥ 0.9kW) servo motors.
Controller	The device provided for servo applications, mechanical motion programming.

Component	Specification		
PC debugging tool	ESView V4 software for PC.		
Cables	Encoder cables, motor power cables, EtherCAT communication cables, IO cables, etc.		

1.7.3 Peripheral Devices Specification

Drive Mode	Main circuit voltage	Built-in Regenerative Resistor	Min. Allowable Resistance	Min.Rated Current for Circuit Breaker
DX3-1A5AEA	Single-phase 200 VAC to 240VAC	-	45Ω	4A
DX3-101AEA	Single-phase 200 VAC to 240VAC	-	45Ω	4A
DX3-102AEA	Single-phase 200 VAC to 240VAC	-	45Ω	4A
DX3-104AEA	Single-phase 200 VAC to 240VAC	-	45Ω	4A
DX3-108AEA	Single-phase or three- phase 200 VAC to 240VAC	50Ω, 60W	25Ω	6A
DX3-110AEA	Single-phase or three- phase 200 VAC to 240VAC	50Ω, 60W	25Ω	6A
DX3-115AEA	Single-phase or three- phase 200 VAC to 240VAC	40Ω / 80W	25Ω	16A
DX3-120AEA	Single-phase 200 VAC to 240VAC	40Ω / 80W	25Ω	16A
DX3-110DEA	3-phase AC 380V~440V	100Ω / 80W	65Ω	4A(3-phase)
DX3-115DEA	3-phase AC 380V~440V	100Ω / 80W	65Ω	6A(3-phase)
DX3-120DEA	3-phase AC 380V~440V	50Ω / 80W	40Ω	10A(3-phase)
DX3-130DEA	3-phase AC 380V~440V	50Ω / 80W	40Ω	16A(3-phase)
DX3-150DEA	3-phase AC 380V~440V	35Ω / 80W	20Ω	20A(3-phase)
DX3-175DEA	3-phase AC 380V∼440V	35Ω / 80W	20Ω	25A(3-phase)

1.8 Part Numbers

	Drive Model	Power	Motor Model	Power Cable	Encoder Cable
E	ED3L-A5A	50W	EM3A-A5ALA	EC3P-N9118-□□ (without	EC3S-I1724-□□

Drive Model	Power	Motor Model	Power Cable	Encoder Cable	
ED3L-01A	100W	EM3A-01ALA	brake) EC3P-B9118-□□ (Absolute)	EC3S-A1724-□□ EC3S-I1124-□□	
ED3L-02A	200W	EM3A-02ALA EM3A-02AKA EM3A-02AFA	EC3P-N9718-□□ (without brake, IP65 plug) EC3P-B9718-□□ (Absolute,	EC3S-A1124-□□	
ED3L-04A	400W	EM3A-04ALA EM3A-04AKA EM3A-04AFA	IP65 plug)	EC3P-N8118-□□ (without brake)	
ED3L-08A	750W	EM3A-08ALA EM3A-08AKA EM3A-08AFA		EC3P-B8118-□□ (with brake) EC3P-N8718-□□ (without brake, IP65)	
	1kW	EM3A-10ALA EM3A-10AKA EM3A-10AFA		EC3P-B8718-□□ (with brake, IP65)	
ED3L-10A	1kW	EMG-10AFD EMG-10ALB EMG-10AKB	EC3P-N9314-□□ (without brake) EC3P-B9314-□□ (Absolute)	EC3S-I1324-□□ EC3S-A1324-□□	
ED3L-15A	1.5kW	EMG-15A	EC3S-I1324- brake) EC3S-A1324- (Absolute)		
		EM3G-13A	EC3S-I1924- brake) EC3S-A1924- (Absolute)		
		EM3A-15A	EC3S-I1924- brake) EC3S-A1924- (Absolute)	EC3P-N9314-pp(without brake) EC3P-B9314-pp (with brake)	
ED21 20A	2kW	EMG-20A	EC3S-I1324- brake) EC3S-A1324- (Absolute)		
ED3L-20A		EM3A-20A	EC3S-I1924- brake) EC3S-A1924- (Absolute)		
ED3L-10D	1kW	EM3G- 09D□A224	EC3S-A1924-□□(Absolute)	EC3P-N9314-□□(without brake) EC3P-B9314-□□ (with brake)	
ED3L-15D	1.5kW	EM3A- 15D□B224 EM3G- 13D□A224	EC3S-A1924-□□(Absolute)	EC3P-N9314-□□(without brake) EC3P-B9314-□□(with brake)	
ED3L-20D	2kW	EM3A- 20D□B224 EM3G- 18D□A224	EM3A-20D□B224 EM3G-18D□A224	EC3P-N9314-□□(without brake) EC3P-B9314-□□(with brake)	
ED3L-30D	3kW	EM3A- 30DLA224 EM3G- 29DLA244	EC3S-A1924-¤¤(Absolute)	EC3P-N8313-□□(without brake) EC3P-B8313-□□(with brake) EC3P-N8212-□□(without brake) EC3P-B8212-□□(with brake)	

Drive Model	Power	Motor Model	Power Cable	Encoder Cable
ED3L-50D	5kW	EM3A- 40DLA224 EM3A- 50DLA224 EM3G- 44DLA224	EC3S-A1924-==(Absolute)	EC3P-N9313-口口(without brake) EC3P-B9313-口口(with brake) EC3P-N9319-口口(without brake) EC3P-B9319-口口(with brake) EC3P- N9219-口口(无制动器) EC3P-B9219-口口(with brake)
ED3L-75D	7.5kW	EM3G- 55DLA224 EM3G- 75DLA224	EC3S-A1924-==(Absolute)	EC3P-N9219-□□(without brake) EC3P-B9219-□□(with brake) EC3P-N9211-□□(without brake) EC3P-B9211-□□(with brake)

 \Box : The last two digits of the cable indicate the length (e.g. 1M5, 03, 05, 08, 10, 12, 15, 20), in metres (mm).
Flexible cables are also available, marked with "-RX".

Chapter 2 Installation

2.1 Installation Precautions

• Installation Near Sources of Heat

Implement measures to prevent temperature increases caused by external heat sources so that the ambient temperature of the Drive is within the specified limits.

Installation Near Sources of Vibration

Install a vibration absorber on the installation surface of the Drive so that the Drive will not be subjected to vibration.

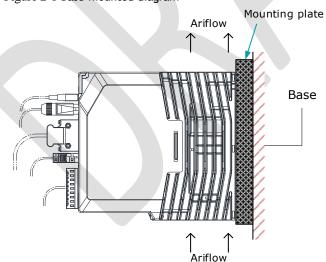
Other Precautions

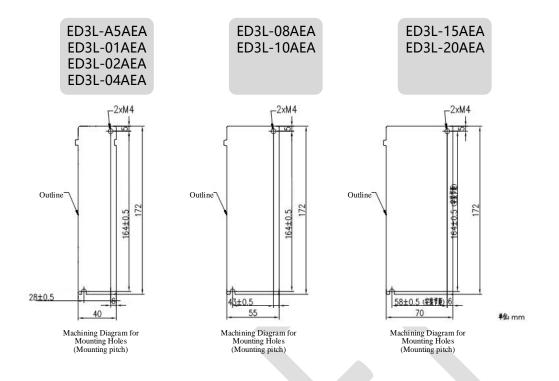
Never install the Drive in a location subject to high temperatures, high humidity, water drops, cutting oil, excessive dust, excessive dirt, excessive iron powder, corrosive gasses, or radioactivity.

2.2 Mounting Types and Orientation

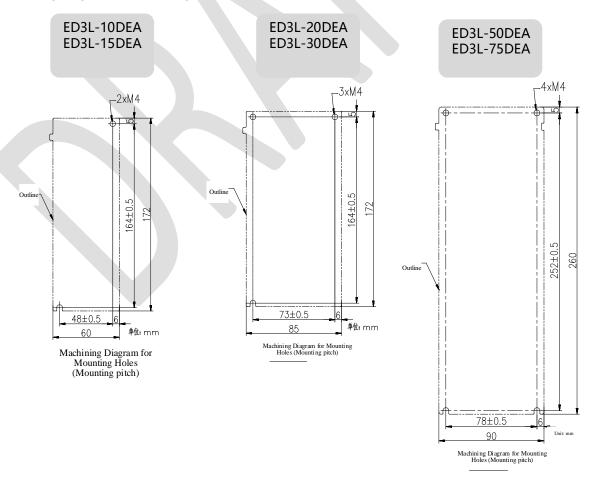
The Drives are based mounted and should be fitted to a non-painted metal surface. Mount the Drive vertically, as is shown in Figure 2-1.

Mount the Drives so that the Display Panel is facing toward the operator. Prepare two or three mounting holes for the Drive and mount it securely in the mounting holes (The number of mounting holes depends on the size of the Drive).




Figure 2-1 Base-mounted diagram

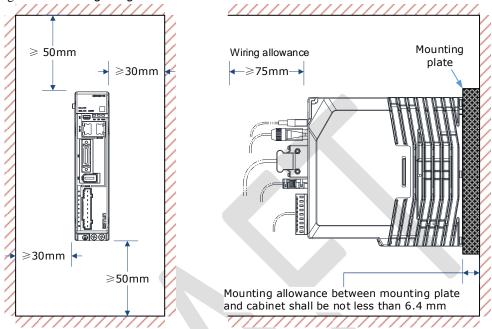
2.3 Mounting Hole Dimensions


Use all mounting holes to securely mount the Drive to the mounting surface.

To mount the Drive, use a screwdriver that is longer than the depth of the Drive.

Wiring diagram for mounting holes at 200VAC

Wiring diagram for mounting holes at 400VAC



2.4 Mounting Interval

Installing One Drive in a Control Cabinet

When installing a single Drive use Figure 2-2 as a reference for free space around the installation.

Figure 2-2 Installing a single Drive in a control cabinet

Installing multiple Drives in a Control Cabinet

When installing a multiple Drives use Figure 2-3 as a reference for free space around the installation.

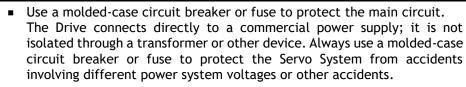
Figure 2-3 Installing multiple Drives in a control cabinet

The DX3 can be mounted so that the distance between adjacent Drives is 1mm. The DX3 50D and 75D drives do not allow close mounting due to wiring, and the distance between drives is to be confirmed upon assembly of the cable, for which 80mm is the recommended

Chapter 3 Wiring and Connecting

3.1 Precautions for Wiring

3.1.1 General Precautions


Never change any wiring while power is being supplied, in case a risk of electric shock or injury.

- Wiring and inspections must be performed only by qualified engineers.
- Check all wiring and power supplies carefully. Incorrect wiring or incorrect voltage application to the output circuits may cause short-circuit failures. If a short-circuit failure occurs as a result of any of these causes, the holding brake will not work. This could damage the machine or cause an accident that may result in death or injury.
- Connect the AC and DC power supplies to the specified Drive terminals.
- Wait for at least five minutes after turning OFF the power supply and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Never touch the power supply terminals while the CHARGE lamp is lit after turning OFF the power supply because high voltage may still remain in the Drive.
- Observe the precautions and instructions for wiring and trial operation precisely as described in this document.
- Check the wiring to be sure it has been performed correctly.
 Connectors and pin layouts are sometimes different for different models.
 Always confirm the pin layouts in technical documents for your model before operation.

- Use shielded twisted-pair cables or screened unshielded multi-twistedpair cables for I/O Signal Cables and Encoder Cables.
- The main circuit cable of the Drive must be guaranteed to work normally at 75 °C.
- Observe the following precautions when wiring the Drive's main circuit terminals.
 - Turn ON the power supply to the Drive only after all wiring, including the main circuit terminals, has been completed.
 - If a connector is used for the main circuit terminals, remove the main circuit connector from the Drive before you wire it.
 - Insert only one wire per insertion hole in the main circuit terminals.
 - When you insert a wire, make sure that the conductor wire (e.g. whiskers) does not come into contact with adjacent wires.
- Install molded-case circuit breakers and other safety measures to provide protection against short circuits in external wiring.

- Install an earth leakage breaker. The Drive does not have a built-in ground fault protective circuit. To configure a safer system, install a ground fault detector against overloads and short-circuiting, or install a ground fault detector combined with a molded-case circuit breaker.
- Never turn the power supply ON and OFF more than necessary. Use the Drive for applications that require the power supply to turn ON and OFF frequently. Such applications will cause elements in the Drive to deteriorate.
- After you have started actual operation, allow at least one hour between turning the power supply ON and OFF (as a guideline).

3.1.2 Countermeasures against Noise

IMPORTANT

The Drive is designed as an industrial device. It therefore provides no measures to prevent radio interference. The Drive uses high-speed switching elements in the main circuit. Therefore, peripheral devices may be affected by switching noise.

If the equipment is to be used near private houses or if radio interference is a problem, take countermeasures against noise.

Since the Drive uses microprocessors, it may be affected by switching noise from peripheral devices.

To prevent the noise from the Drive or the peripheral devices from causing malfunctions of any devices, take the following countermeasures against noise as required.

- Install the input reference device and Noise Filter as close to the Drive as possible.
- Always install a Surge Absorber for relays, solenoids, and Magnetic Contactor coils.
- Never place the following cables in the same duct or bundle them together. Also, separate the cables from each other by at least 30 cm.
 - Main Circuit Cables and I/O Signal Cables
 - Main Circuit Cables and Encoder Cables
- Never share the power supply with an electric welder or electrical discharge machine. If
 the Drive is placed near a high-frequency generator, install Noise Filters on the input side
 on the Main Circuit Power Supply Cable and Control Power Supply Cable even if the same
 power supply is not shared with the high-frequency generator. Refer to the section Noise
 Filters for information on connecting Noise Filters.
- Implement suitable grounding measures. Refer to the section 3.1.4 Grounding for information on grounding measures.

Noise Filters

You must attach Noise Filters in appropriate places to protect the Drive from the adverse effects of noise. Figure 3-1 is an example of wiring for countermeasures against noise.

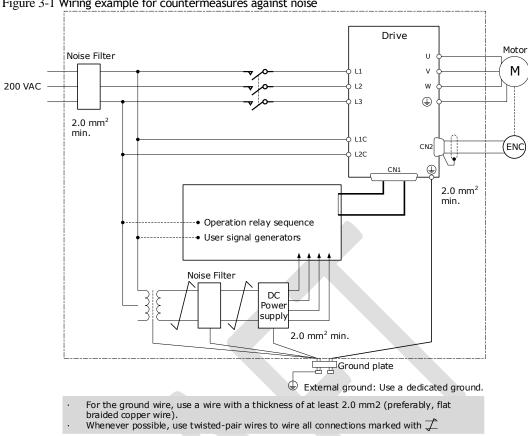
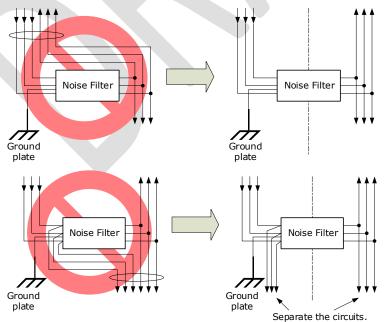
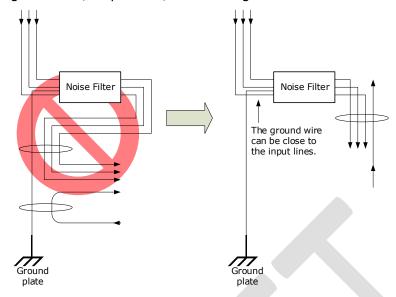
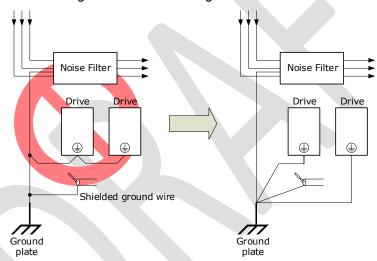
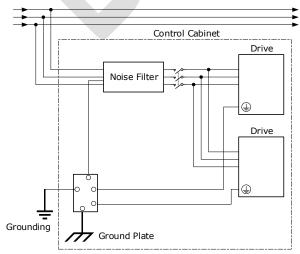



Figure 3-1 Wiring example for countermeasures against noise


Noise Filter Wiring and Connection Precautions

Always observe the following precautions when wiring or connecting Noise Filters.


Separate input lines from output lines. Do not place input lines and output lines in the same duct or bundle them together.


• Separate the Noise Filter ground wire from the output lines. Do not place the Noise Filter ground wire, output lines, and other signal lines in the same duct or bundle them together.

• Connect the Noise Filter ground wire directly to the grounding plate. Do not connect the Noise Filter ground wire to other ground wires.

• If a Noise Filter is located inside a control panel, first connect the Noise Filter ground wire and the ground wires from other devices inside the control panel to the grounding plate for the control panel, then ground the plate.

3.1.3 Recommended EMC Filters

To comply with the limits based on IEC/EN 61800-3 second environment (C2) the Drive and Motor must be installed with an EMC/RFI filter. Recommended filters are:

Driver voltage	Power Range	EMC C2
200VAC	50W∼1.5kW	Schaffner FN 3270H-10-44
ZUUVAC	2kW	Schaffner FN 3270H-20-44
	1kW~2 kW	Schaffner FN 3025HP-10-71
400VAC	3kW~5 kW	Schaffner FN 3025HP-10-71
	7.5kW	Shanghai Aerodev DNF51-3PH- 3×20A

These filters have been tested with cable lengths of 3m and 20m.

3.1.4 Grounding

Implement grounding measures as described in this section. Implementing suitable grounding measures will also help prevent malfunctions, which can be caused by noise. Always use an unpainted backplane for electrical cabinets.

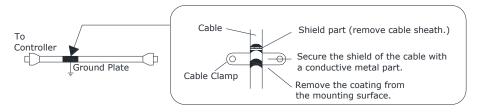
Observe the following precautions when wiring the ground cable.

- Ground the Drive to a resistance of 100 m Ω or less.
- Be sure to ground at one point only.
- Ground the Motor directly if the Motor is insulated from the machine.

Motor Frame Ground or Motor Ground

If the Motor is grounded thought the machine, the switching noise current can flow from the main circuit of the Drive through the stray capacitance of the Motor. To prevent this always connect the Motor frame terminal (FG) or ground terminal (FG) of the Motor to the ground terminal $\stackrel{\frown}{\oplus}$ on the Drive. Also, be sure to ground the ground terminal $\stackrel{\frown}{\oplus}$.

Noise on I/O Signal Cables

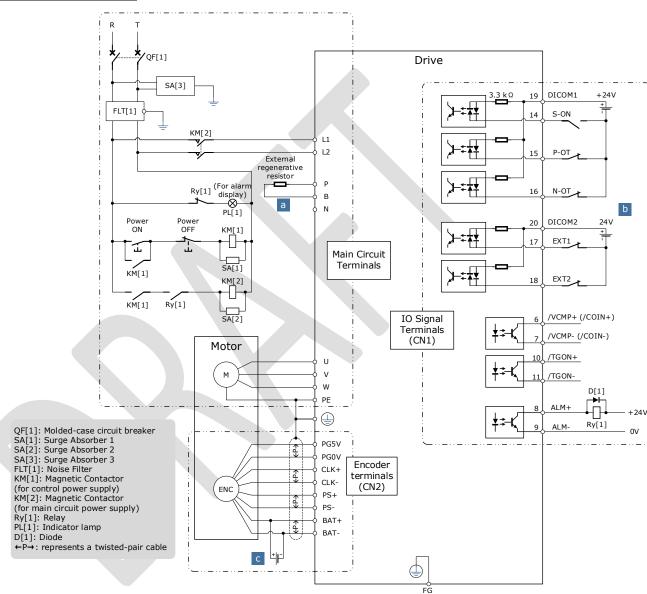

To prevent noise entering the I/O Signal Cable connect the shield of the I/O Signal Cable to the connector shell and ensure the shell is connected to ground.

If placing cables in metal conduits, ensure the conduit is connected to ground.

For all grounding, use a single grounding point.

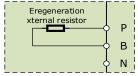
Cable Fixing

It is recommended that all cable shields are secured with a conductive metal clamp to the ground plate. For example:

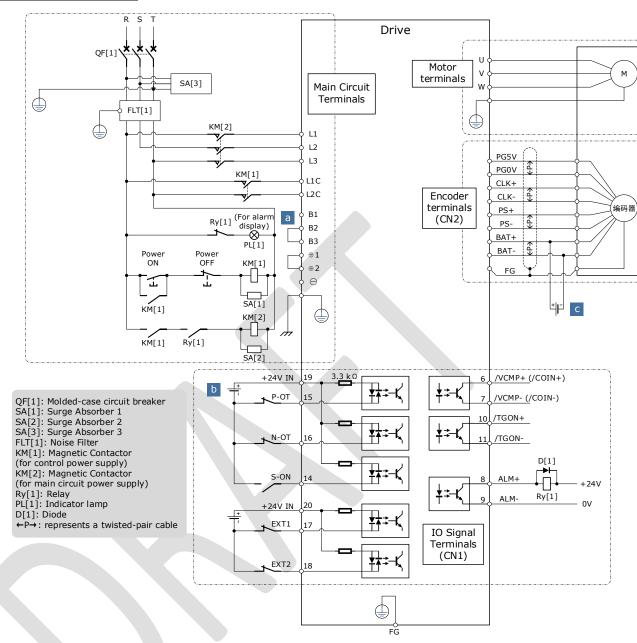


Ferrite Coils

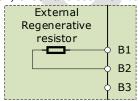
While ferrite coils can be used to solve application specific EMC issues, they should not be necessary for applications.


3.2 Basic Wiring Diagrams

Rated power from 50W to 400W

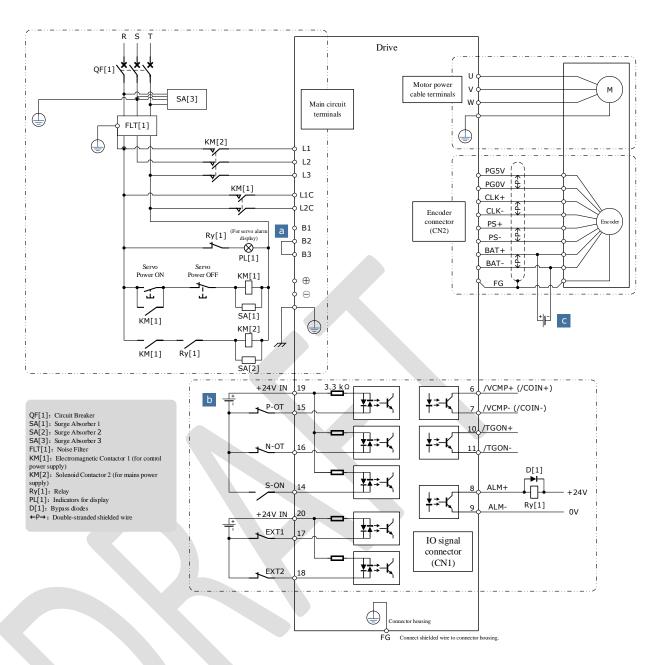

a: When an external discharge resistor is required, an external regenerative resistor is connected between P and B.

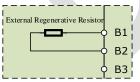
The connection method is as follows. In addition, check and set "Pn521.0=0".



- b: The external wiring of the input signals can use the co-cathode method or the co-anode method.
- c: The connection of the battery is only for the Motors with the absolute encoder.

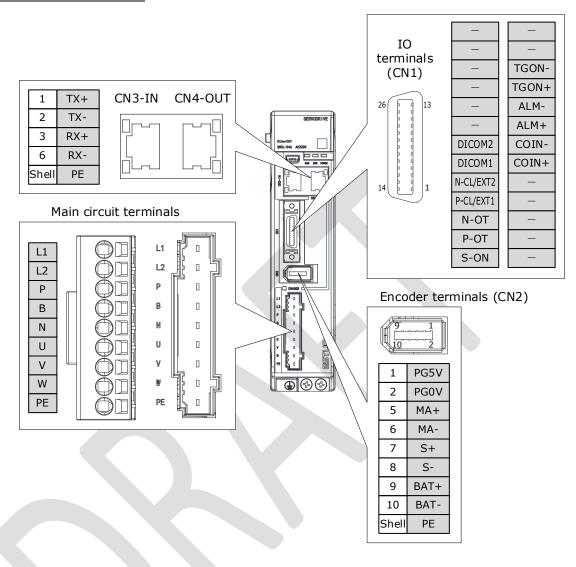
Rated power from 750W to 2kW

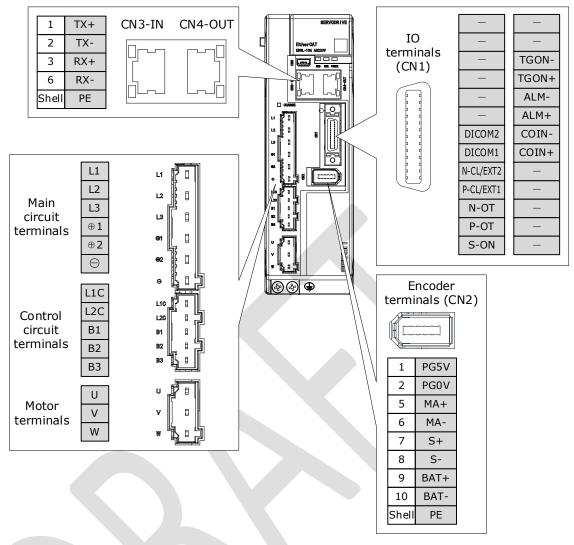

a: When the busbar capacitance is insufficient, remove the short wiring between B2 and B3, and connect an external regenerative resistor between B1 and B2, as is shown in the following figure. In addition, check and set Pn521.0 as 0 after the power up.


b: The external wiring of the input signals can use the co-cathode method or the co-anode method.

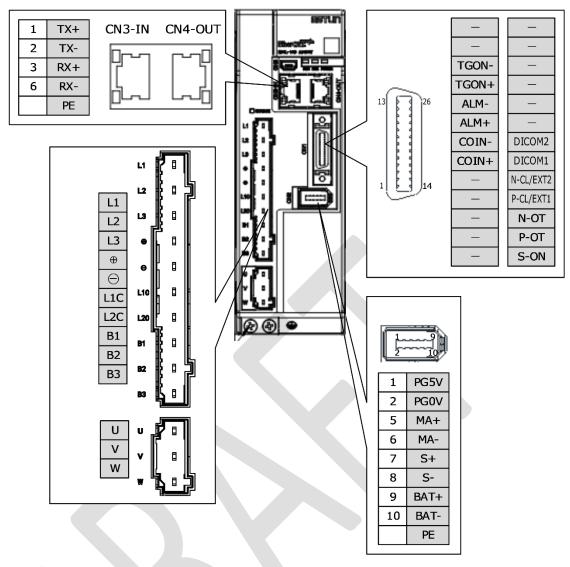
c: The connection of the battery is only for the Motors with the absolute encoder.

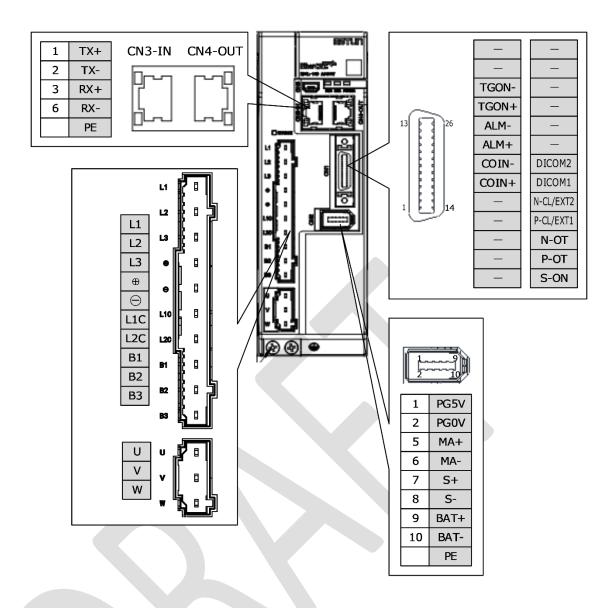
400VAC, rated power from 1kW to 7.5kW

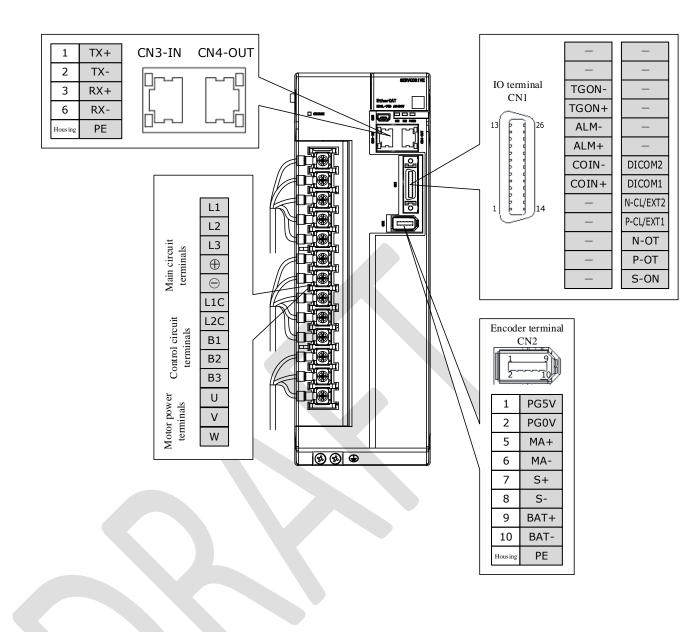

a: When an external bleeder resistor is required, remove the jumper between B2 and B3 and connect an external regenerative resistor between B1 and B2, as shown below. In addition, check and set "Pn521.0 = 0".


- b: The input signal can be wired with a common cathode or common anode.
- c: Only servo motors with absolute encoders use the battery case wiring.

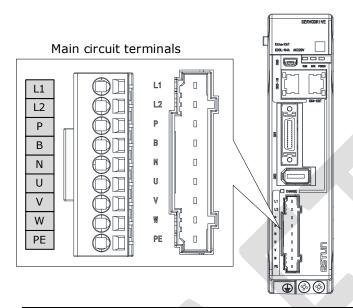
3.3 Terminals Arrangements


Rated power from 50W to 400W

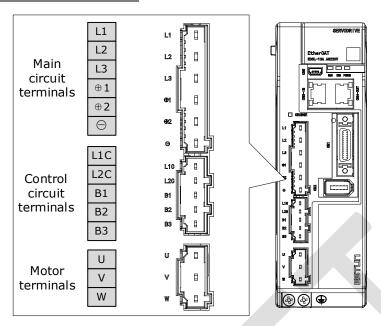

Rated power from 750W to 2kW


400VAC, rated power from 1kW to 1.5kW

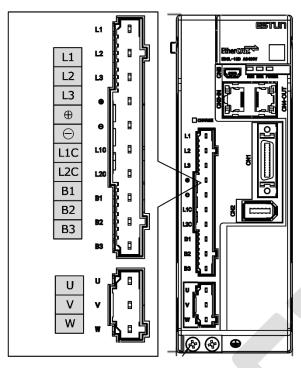
400VAC, rated power from 2kW to 3kW


400VAC, rated power from 5kW to 7.5kW

3.4 Wiring the Power Supply to Drive

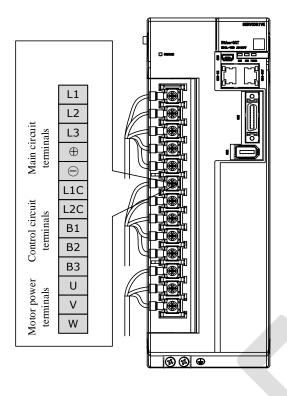

3.4.1 Terminals Arrangement

Rated power from 50W to 400W


Symbols	Name	Specifications and Reference
L1, L2	Main circuit power supply input terminals	Single-phase, 200 VAC to 240 VAC, -15% to +10%, 50Hz or 60Hz
Р, В	Regenerative Resistor terminal	Connects a regenerative resistor with a minimum resistance value of 45 ohm
P, N	DC terminals	For the common DC bus, connect all P of Drive to the positive pole, and N to the negative pole.
U, V, W	Motor terminals	Connects the U-phase, V-phase and W-phase of Motor
PE	Ground terminal	Always connect this terminal to prevent electric shock.

Rated power from 750W to 1kW

Symbols	Name	Specifications and Reference
L1, L2, L3	Main circuit power supply input terminals	Three-phase, 200 VAC to 240 VAC, -15% to +10%, 50Hz or 60Hz
⊕1, ⊕2	DC reactor terminals	For using a DC reactor, remove the short wiring, and connect a DC reactor between $\oplus 1$ and $\oplus 2$.
⊕2, ⊖	DC terminals	For the common DC bus, connect all $\oplus 2$ of Drive to the positive pole, and \ominus to the negative pole.
L1C, L2C	Control circuit terminals	Single-phase, 200 VAC to 240 VAC, -15% to +10%, 50Hz or 60Hz
B1, B2, B3	Regenerative Resistor terminal	There is a short wiring between B2 and B3 at the factory. When the busbar capacitance is insufficient, remove the short wiring, and connect an external regenerative resistor between B1 and B2.
U, V, W	Motor terminals	Connects the U-phase, V-phase and W-phase of Motor
	Ground terminal	Always connect this terminal to prevent electric shock.

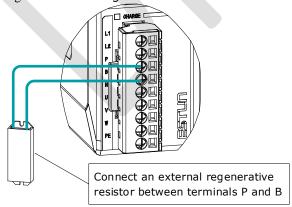

400VAC, rated power from 1kW to 3kW

Take for example a product with a power rating of 1kW~1.5kW. Products with power rating from 1.5kW to 3kW are similar in appearance and have the same components

Symbol	Name	Specifications
L1, L2, L3	Power supply input terminals	3-phase AC 380V~440V, -15%~+10%, 50Hz/60Hz
⊕,⊖	DC busbar connectors	When multiple servo drives are used in a common DC bus configuration, \oplus and \bigcirc of all drives are connected in series, respectively.
L1C, L2C	Control power terminals	Single-phase AC 380V~440V, -15%~+10%, 50Hz/60Hz
	Regenerative resistor connectors	 When using the built-in regenerative resistor: Keep the connection between B2 and B3 shorted.
B1, B2, B3		When using an external regenerative resistor: Please remove the jumper between B2 and B3 and connect the external regenerative resistor between B1 and B2.
U, V, W	Motor power connectors	• Connect the U, V and W phases of the motor.
(1)	Grounding terminals	Connect the power supply earth terminal for earthing.

400VAC, rated power from 5kW to 7.5kW

Symbol	Name	Specifications
L1, L2, L3	Power supply input terminals	3-phase AC 380V~440V, -15%~+10%, 50Hz/60Hz
⊕,⊖	DC busbar connectors	When multiple servo drives are used in a common DC bus configuration, \oplus and \ominus of all drives are connected in series, respectively.
L1C, L2C	Control power terminals	Single-phase AC 380V~440V, -15%~+10%, 50Hz/60Hz
	Regenerative resistor connectors	 When using the built-in regenerative resistor: Keep the connection between B2 and B3 shorted.
B1, B2, B3		When using an external regenerative resistor: Please remove the jumper between B2 and B3 and connect the external regenerative resistor between B1 and B2.
U, V, W	Motor power connectors	• Connect the U, V and W phases of the motor.
(4)	Grounding terminals	Connect the power supply earth terminal for earthing.
L1, L2, L3	Power supply input terminals	3-phase AC 380V~440V, -15%~+10%, 50Hz/60Hz


3.4.2 Wiring a Regenerative Resistor

When the busbar capacitance is insufficient, the driver needs an external regenerative resistor. The minimum resistance of a regenerative resistor varies by driver model, and the detailed specifications are shown in the table below.

Drive model	Rated power	The minimum value of the regenerative resistance	Connect the terminals	
DX3-1A5AEA	0.05kW			
DX3-101AEA	0.1kW	450	P、B	
DX3-102AEA	0.2kW	4502	P, D	
DX3-104AEA	0.4kW			
DX3-108AEA	7.5kW	350	B1 \ B2	
DX3-110AEA	1.0kW	25Ω	DI \ DZ	
DX3-115AEA	1.5kW	100	D4 D2	
DX3-120AEA	2.0kW	10Ω	B1、B2	
DX3-110DEA	1kW	(50	D4 D2	
DX3-115DEA	1.5kW	65Ω	B1、B2	
DX3-120DEA	2.0kW	400	D4 D2	
DX3-130DEA	3.0kW	40Ω	B1、B2	
DX3-150DEA	5.0kW	20Ω	B1、B2	
DX3-175DEA	7.5kW	2017	DI \ DZ	

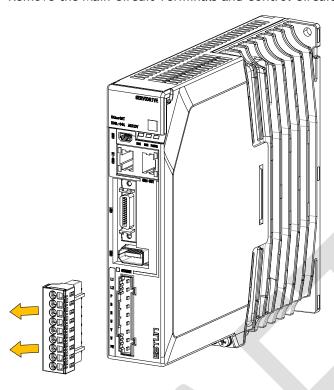
Figure 3-2 is an example of connecting an external regenerative resistor for the drives rated power from 50W to 400W.

Figure 3-2 Wires a regenerative resistor

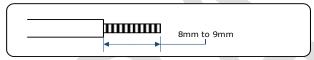
Connect the external regenerative resistor as following to avoid damaging the drive or malfunction.

It is necessary to connect an external regenerative resistor for the drives rated power from 50W to 400W. The minimum resistance value of the external regenerative resistor is 45 ohms. Never connect the external regenerative resistor between terminals P and N.

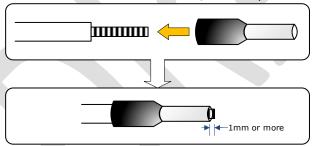
- In the case of the drives rated power from 750W to 1kW, confirms whether the bus capacitance is insufficient. If necessary, connect an external regeneration resistor between terminals B1 and B2. The minimum resistance value of the external regenerative resistor is 25 ohms. Never connect the external regenerative resistor between terminals B1 and B3.
- When an excternal regenerative resistor is connected, check and set Pn521.0 as 0 after the power up.
- Please check and confirm that the external regenerative resistor is mounted on non-combustible materials.


3.4.3 Wiring Procedure

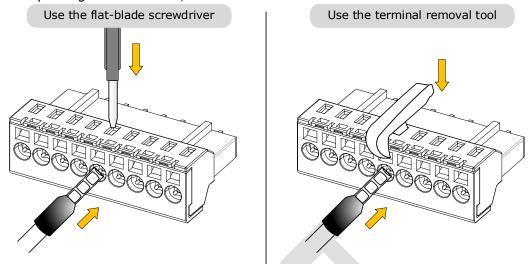
Prepare the following items before preparing the wiring for the Main Circuit Terminals and Control Circuit Terminals.


Required Item	Description	
Flat-blade screwdriver or Terminal removal tool	 Flat-blade screwdriver: commercially available screwdriver with tip width of 3.0 mm to 3.5 mm Terminal removal tool: an accessory of the Drive 	
Cold pressed terminals	Sleeve type ferrule with cross-section from 1.5 mm ² to 2.5 mm ²	
Wiring plier	Commercially available plier with crimping and stripping functions	

Follow the procedure below to wire the Main Circuit Terminals and Control Circuit Terminals.

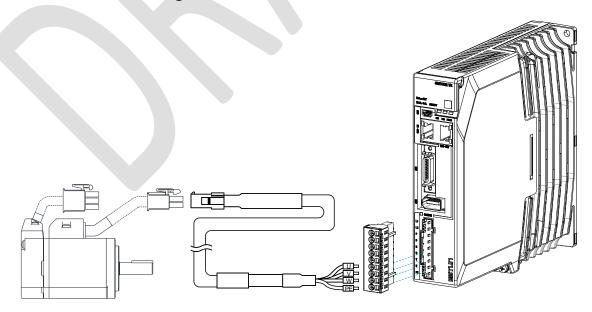

Step 1 Remove the Main Circuit Terminals and Control Circuit Terminals from the Drive.

Step 2 Peel off the sheath so that the conductor portion of the cable will protrude from the tip of the ferrule.


Step 3 Insert the cable into the ferrule (It should protrude 1 mm or more from the ferrule).

Step 4 Crimp the cable that has been inserted into the ferrule, and cut off the cable conductor portion protruding from the ferrule (The allowable protruding length after cutting should not be more than $0.5 \, \text{mm}$).

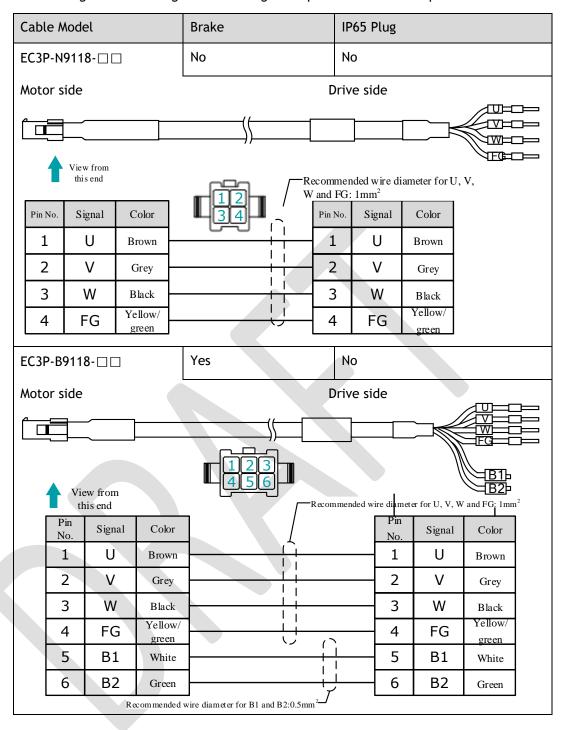
Step 5 Use the flat-blade screwdriver or the terminal removal tool to press down the spring button corresponding to the terminal, and then insert the cable.

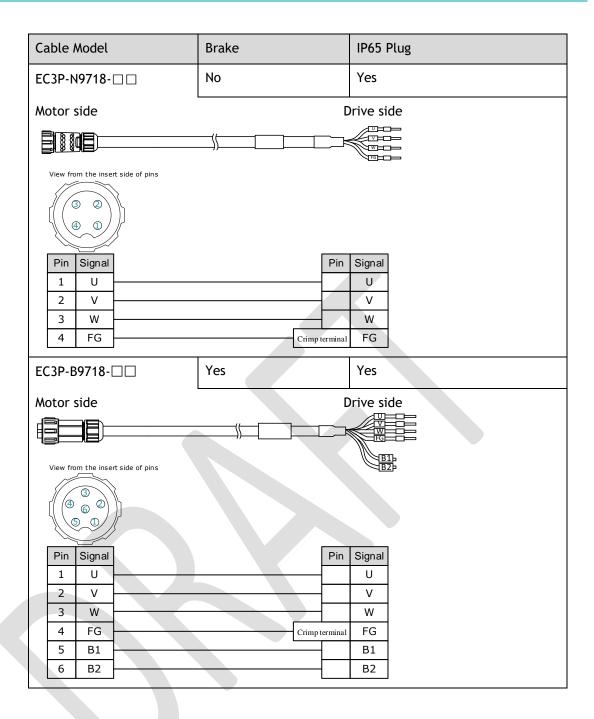

- Step 6 Insert the crimped cable into the connection terminals, and then pull out the tool.
- Step 7 Make all other connections in the same way.
- Step $8\,$ To change the wiring, pull the cable out of the connection terminals. Use the flat-blade screwdriver to press down the spring button corresponding to the terminal, and then gently pull out the cable.
- Step 9 When you have completed wiring, attach connection terminals to the Drive.

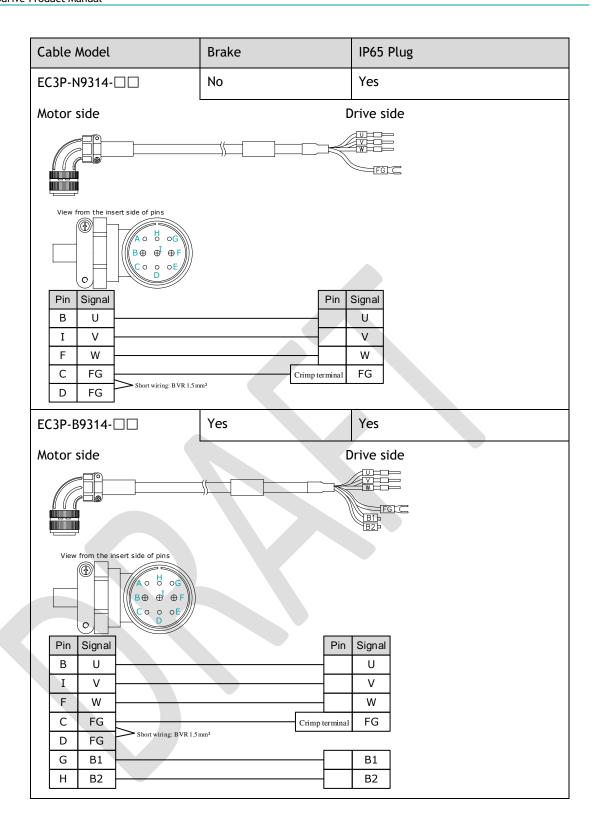
The above wiring procedure is also applicable to the Motor Terminals.

----End

3.4.4 Motor Connection Diagram




3.4.5 Motor Power Cable Description

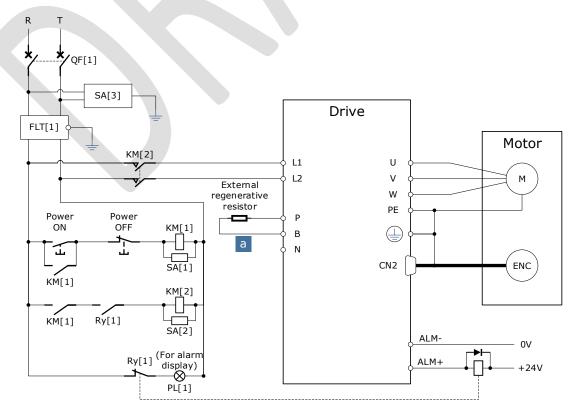

The Motor power cable depends on the Motor model. The common models are shown in the table below.

Motor model Brake	Prako	IP65	Wire	Motor power cable		
	Diake	Plug	diameter	length is 3.0m	length is 5.0m	length is 10.0m
	No	No		EC3P-N9118-03	EC3P-N9118-05	EC3P-N9118-10
EM3A-01A EM3A-02A	No	Yes		EC3P-N9718-03	EC3P-N9718-05	EC3P-N9718-10
EM3A-04A EM3A-08A	Yes	No		EC3P-B9118-03	EC3P-B9118-05	EC3P-B9118-10
EM3A-10A EM3J-04A EM3J-08A	Yes	Yes	1.0mm2	EC3P-B9718-03	EC3P-B9718-05	EC3P-B9718-10
F116 404	No	Yes		EC3P-N9314-03	EC3P-N9314-05	EC3P-N9314-10
EMG-10A	Yes	Yes		EC3P-B9314-03	EC3P-B9314-05	EC3P-B9314-10
EM3A-15A EM3A-20A	Not provided	Yes		EC3P-N9314-03	EC3P-N9314-05	EC3P-N9314-10
EM3A-15D Provid	Provided	Yes	1	EC3P-B9314-03	EC3P-B9314-05	EC3P-B9314-10
EM3A-30D EM3G-09A	Not provided	Yes		EC3P-N8718-03	EC3P-N8718-05	EC3P-N8718-10
EM3G-13A EMG-10A EMG-15A EMG-20A	Provided	Yes	2.0mm ²	EC3P-B8718-03	EC3P-B8718-05	EC3P-B8718-10
EM3A-30D	Not provided	Yes		EC3P-N8214-03	EC3P-N8214-05	EC3P-N8214-10
	Provided	Yes		EC3P-B8214-03	EC3P-B8214-05	EC3P-B8214-10

The following shows the diagram and wiring description of each Motor power cable.

3.4.6 Power Input Wiring Specifications

The power input wiring specification depends on the Motor model. The following table shows the recommended wire gauge for each Drive.


Drive model	Recomme	ended wire gauge			
Drive modet	AWG	Cross-sectional area (mm²) Rated current (A			
DX3-1A5AEA	14	2.075	8.2		

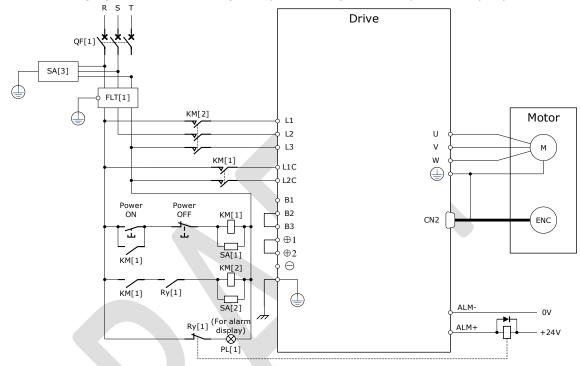
Drive model	Recommended wire gauge				
Drive modet	AWG	Cross-sectional area (mm²)	Rated current (A)		
DX3-101AEA	14	2.075	8.2		
DX3-102AEA	14	2.075	8.2		
DX3-104AEA	14	2.075	8.2		
DX3-108AEA	13	2.627	10.4		
DX3-110AEA	13	2.627	10.4		
DX3-115AEA	12	3.332	13.1		
DX3-120AEA	12	3.332	13.1		
DX3-110DEA	14	2.075	8.2		
DX3-115DEA	14	2.075	8.2		
DX3-120DEA	13	2.627	10.4		
DX3-130DEA	13	2.627	10.4		
DX3-150DEA	10	5.26	20.8		
DX3-175DEA	9	6.63	26.2		

3.4.7 Power Input Wiring Example

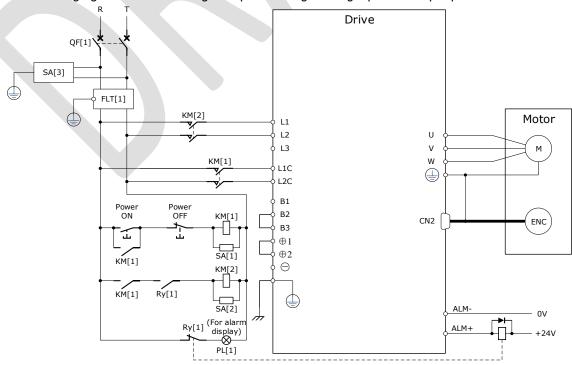
200VAC Rated power from 50W to 400W

Use single-phase 200 VAC to 240 VAC as the power input for the Drives rated power from 50W to 400W.

QF[1]: Molded-case circuit breaker SA[1]: Surge Absorber 1 SA[2]: Surge Absorber 2


SA[3]: Surge Absorber 3 FLT[1]: Noise Filter Ry[1]: Relay PL[1]: Indicator lamp

KM[1]: Magnetic Contactor (for control power supply)
KM[2]: Magnetic Contactor (for main circuit power supply)


200VAC Rated power from 750W to 2kW

Use single-phase or three-phase 200 VAC to 240 VAC as the power input for the Drives rated power from 750W to 1.5kW.

The following figure shows the wiring example for using the three-phase AC input power.

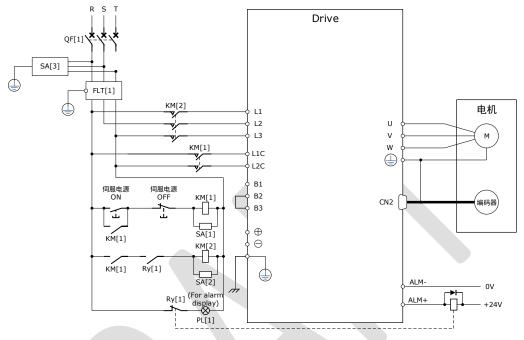
The following figure shows the wiring example for using the single-phase AC input power.

QF[1]: Molded-case circuit breaker

SA[3]: Surge Absorber 3

SA[1]: Surge Absorber 1 FLT[1]: Noise Filter

SA[2]: Surge Absorber 2


Ry[1]: Relay PL[1]: Indicator lamp

KM[1]: Magnetic Contactor (for control power supply)
KM[2]: Magnetic Contactor (for main circuit power supply)

400VAC, ated power from 1kW to 5kW

The driver should use a three-phase AC 380V~440V input power supply.

[When using a three-phase AC power supply]

QF[1]: Molded-case circuit breaker

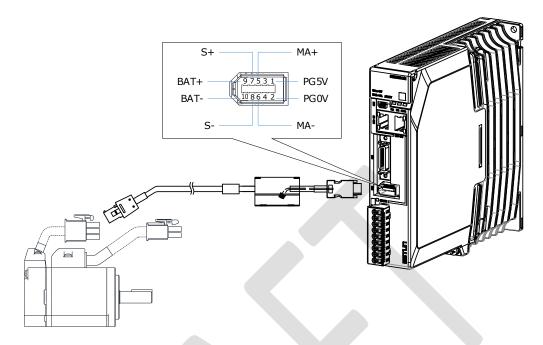
SA[1]: Surge Absorber 1

SA[2]: Surge Absorber 2

SA[3]: Surge Absorber 3

FLT[1]: Noise Filter

Ry[1]: Relay

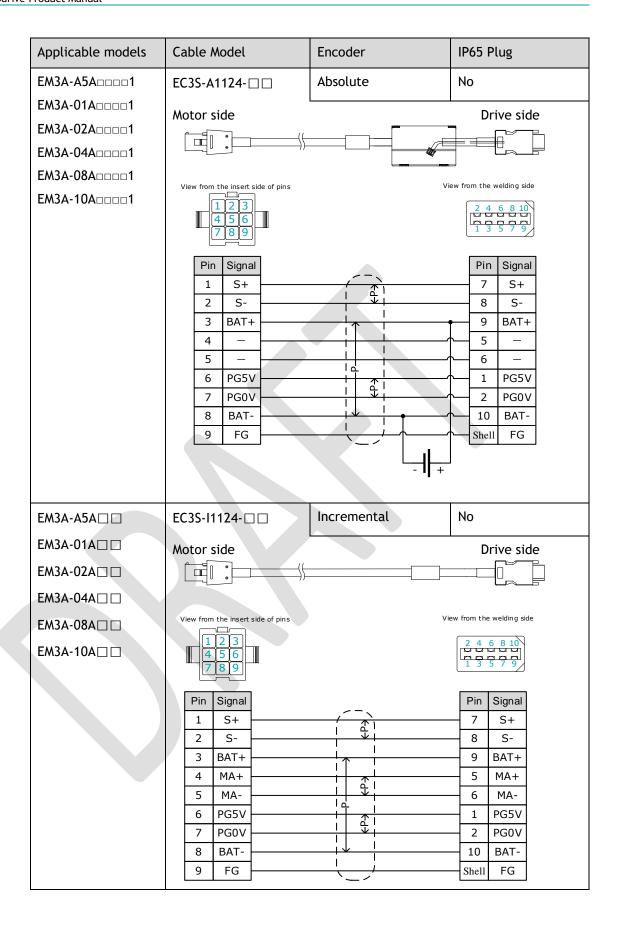

PL[1]: Indicator lamp

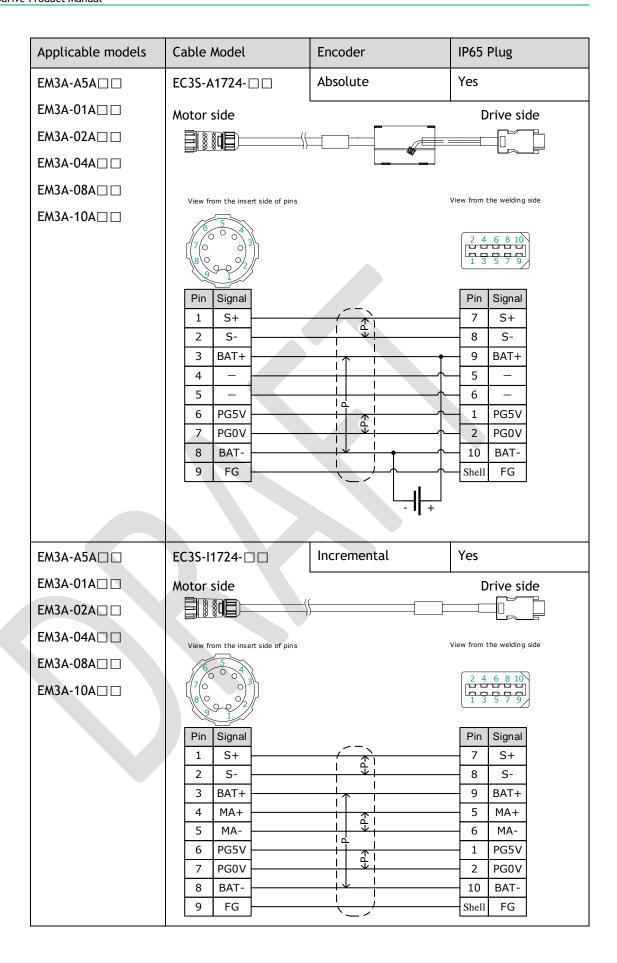
KM[1]: Magnetic Contactor (for control power supply)

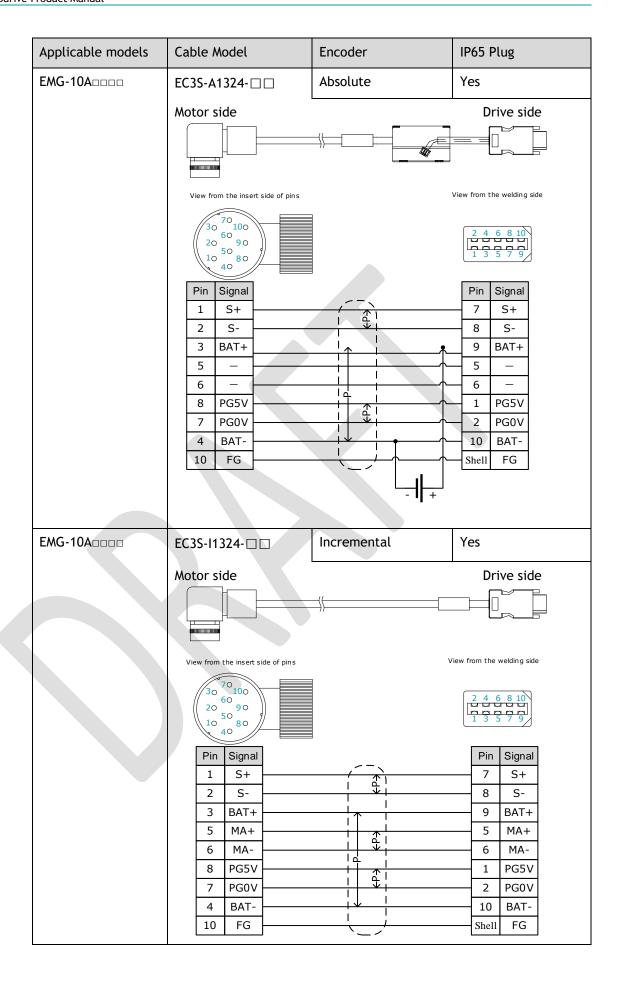
KM[2]: Magnetic Contactor (for main circuit power supply)

3.5 Wiring the Encoder

3.5.1 Connection Diagram

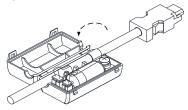


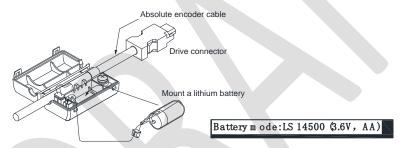

3.5.2 Encoder Cable Description


The encoder cable depends on the Motor model. The common models are shown in the table below.

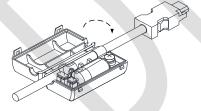
Motor model	Encoder	IP65	Motor power cable		
	Liicodei	IFOJ	length is 3.0m	length is 5.0m	length is 10.0m
EM3A-A5A EM3A-01A	Incremental	NO	EC3S-I1124-03	EC3S-I1124-05	EC3S-I1124-10
EM3A-02A EM3A-04A	Absolute	NO	EC3S-A1124-03	EC3S-A1124-05	EC3S-A1124-10
EM3A-08A EM3A-10A	Incremental	YES	EC3S-I1724-03	EC3S-I1724-05	EC3S-I1724-10
EM3J-02A EM3J-04A EM3J-08A	Absolute	YES	EC3S-A1724-03	EC3S-A1724-05	EC3S-A1724-10
EM3A-15A EM3A-15D EM3A-20A EM3A-20D EM3A-30A EM3A-30D EM3A-40D EM3A-50DLA EM3GAll aircraft types	Incremental	YES	EC3S-I1924-03	EC3S-I1924-05	EC3S-I1924-10
	Absolute	YES	EC3S-A1924-03	EC3S-A1924-05	EC3S-A1924-10
EMG-10A EMG-15A EMG-20A	Incremental	YES	EC3S-I1324-03	EC3S-I1324-05	EC3S-I1324-10
	Absolute	YES	EC3S-A1324-03	EC3S-A1324-05	EC3S-A1324-10

The following shows the diagram and wiring description of each encoder cable.


3.5.3 Battery Case Connection


- Absolute encoders are fitted on motors with an encoder type of L; e.g. EM3A-02ALA211. These encoders require a battery supply to retain the absolute encoder data when the Drive power is removed.
- Battery model: LS 14500 (3.6V, AA)
- Replace the battery if the alarm A.47 or A.48 was occurred, and perform the operations <u>Absolute encoder multi-turn reset</u> and <u>Absolute encoder</u> <u>alarm reset</u>.

Follow the instructions below to install or replace the battery case.

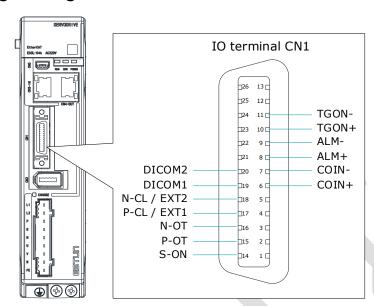

- Step 1 Turn ON only the control power supply to the Drive.
- Step 2 Open the cover of the battery case.

Step 3 Remove the old battery and mount a new battery.

Step 4 Close the cover of the battery case.

Step 5 Repower up the Drive.

Step 6 Resert the Alarms.


- Perform the Fn011 and Fn010 by Panel Operator to reset the alarms, for details, see the section Fn010 (Absolute encoder multi-turn reset) and Fn011 (Absolute encoder alarm reset).
- Also, you can reset the alarms by ESView V4, for details, see ESView Help Manual.

Step 7 Make sure the alarms have been cleared and the Drive operates normally.

----End

3.6 I/O Signal Connections

3.6.1 Signal Diagram

Note: the figure on the left is an example of facing the 400W Drive Panel Operator.

The signal definitions for the IO signals of all drives are the same. The signal name in the diagram above is predefined at the factory. You can can assign the following signals by Pn509, Pn510, and Pn511, see the section $\underline{5.7}$ IO Signal Allocation in detail.

3.6.2 Pin Layout

Pin	Name	Туре	Function
6	COIN+	Output	Positioning Completion signal indicates that Motor
7	COIN-	Output	positioning has been completed during position control.
8	ALM+	Output	Servo Alarm signal is output when the Drive detects an
9	ALM-	Output	error.
10	TGON+	Output	Rotation Detection signal indicates that the Motor is
11	TGON-	Output	operating.
14	S-ON	Input	Servo On signal can supply power to Motor.
15	P-OT	Input	Forward Drive Prohibit Input signal can stop Motor drive (to prevent overtravel) when the moving part of the machine exceeds the range of movement.
16	N-OT	Input	Reverse Drive Prohibit Input signal can stop Motor drive (to prevent overtravel) when the moving part of the machine exceeds the range of movement.
17	P-CL / EXT1	Input	Forward External Torque Limit Input or Touch Probe Input 1
18	N-CL / EXT2	Input	Reverse External Torque Limit Input or Touch Probe Input 2
19	DICOM1	Common	Power supply for CN1-14, CN1-15 and CN1-16, connects to a 24 VDC or OV.

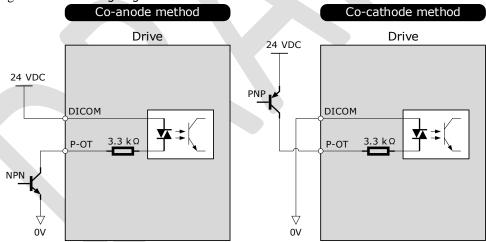
Pin	Name	Туре	Function
20	DICOM2	Common	Power supply for CN1-17 and CN1-18, connects to a 24 VDC or 0V.

3.6.3 Wiring Description

Input Signals Wiring

The input signals of the Drive are divided into two groups, and the details are as following.

Group	Input Pins	Common Pin	
Group 1	CN1-14, CN1-15, CN1-16	CN1-19	
Group 2	CN1-17, CN1-18	CN1-20	

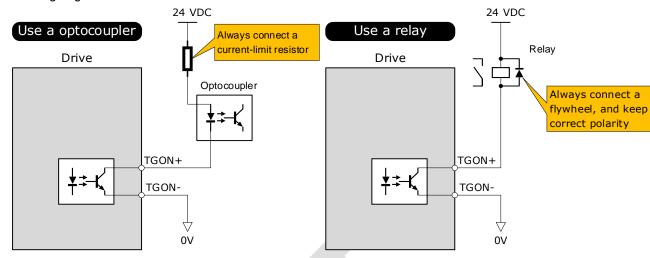


The wiring of the input signals can use the co-cathode method or the co-anode method.

The wiring example in the section 3.2 Basic Wiring Diagrams, the group 1 of pins uses a co-cathode connection, while the group 2 uses a co-anode connection.

Taking the input signal P-OT as an example, Figure 3-3 shows the connection diagram by using an external 24 VDC power supply, and the wiring of other input signals wiring is the same as it.

Figure 3-3 P-OT wiring diagram



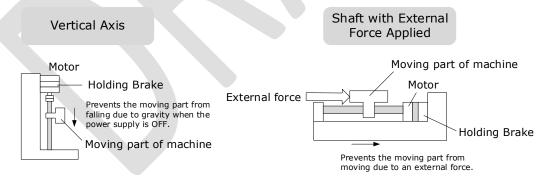
You can assign the input signals by Pn509 and Pn510, including TP (Touch Probe), S-ON (Servo ON), P-OT (Forward Drive Prohibit), N-OT (Reverse Drive Prohibit), P-CL (Forward External Torque Limit), N-CL (Reverse External Torque Limit), G-SEL (Gain Selection), HmRef (Homing), Remote (Remoted Input). For the input signal allocation, see the section <u>5.8.1 Input Signal Allocations</u>.

Output Signals Wiring

Taking the output signal TGON as an example, Figure 3-4 shows the connection diagram for using the optocoupler or relay, and the wiring of other output signals wiring is the same as it.

Figure 3-4 TGON wiring diagram

The maximum permissible voltage and current of the ptocoupler output circuit inside the servo drive are as follows:


Maximum voltage: 30 VDC Maximum current: DC 50 mA

You can assign the output signals by Pn511, including COIN/VCMP (Positioning Completion or Speed Coincidence Detection), TGON (Rotation Detection), S-RDY (Servo Ready), CLT (Torque Limit Detection), BK (Brake), PGC (Motor C-pulse), OT (Overtravel), RD (Motor Excitation), TCR (Torque Detection), Remote (Remoted output). For the output signal allocation, see the section 5.8.2 Output Signal Allocations.

3.6.4 Holding Brake Wiring

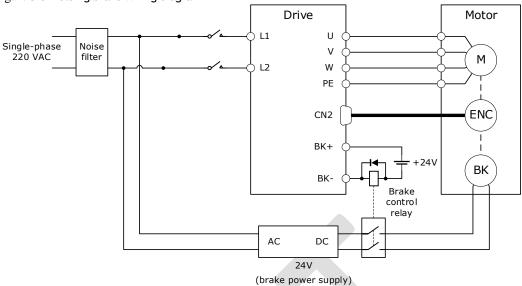
A holding brake is used to hold the position of the moving part of the machine when the Drive is turned OFF so that moving part does not move due to gravity or an external force.

You can use the brake that is built into a Motor with a Brake, or you can provide one on the machine. The holding brake is used in the following cases.

- The brake built into a Motor with a Brake is a de-energization brake. It is used only to hold the Motor and cannot be used for braking. Use the holding brake only to hold a Motor that is already stopped.
- Keep the input voltage at least 21.6 V to make the brake work.
- The wiring of the brake signal has no polarity, please prepare a 24 VDC external power supply.
- Cable of 0.5mm² or above is recommended.

Taking the drives rated from 50W to 400W as an example, Figure 3-5 shows the connection diagram of the holding brake.

Figure 3-5 Holding brake wiring diagram



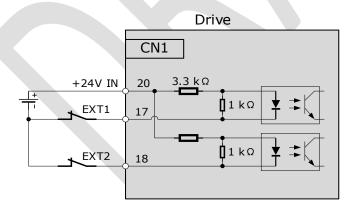
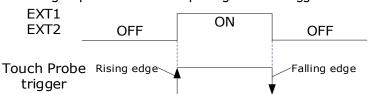

Table 3-1 lists brake specifications for each Motor matched with DX3.

Table 3-1 Brake specifications


Motor Model	Voltage (V)	Holding torque (N·m)	Brake time (ms)	Release time (ms)	Power (W)
EM3A-A5A/01A	24V±10%	0.32	40	20	4
EM3A-02A/04A	24V±10%	1.5	25	50	7.4

3.6.5 Touch Probe Wiring

You shall only use the terminals CN1-17 and CN1-18 for Touch Probe input signal, which has been allocated at factory. The following figure shows the example diagram for the connection.

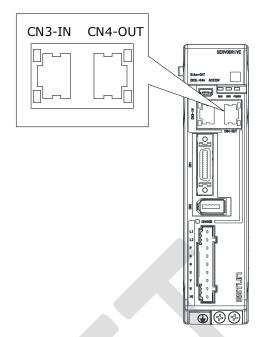
The timing sequence between input signals and trigger is as shown in below.

For details about the function setting, see the section 7.10 Touch Probe.

3.7 Communication Connections

3.7.1 EtherCAT Communication

Connection Diagram

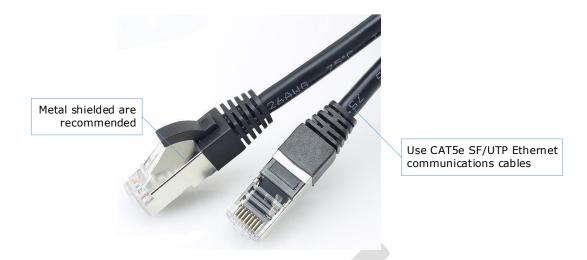


<u>CN3-IN</u>:

Connected by the OUT of the previous drive or controller.

CN4-OUT:

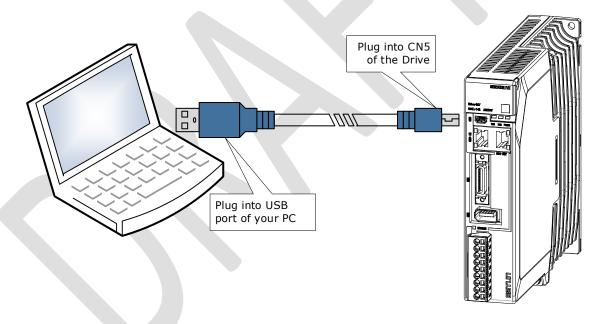
Connect to the next Drive's IN or not connect.


Pin Layout

EtherCAT communication (CN3-IN and CN4-OUT) are RJ45 terminals. The communication cable as the master station or controller should be connected from CN3-IN, and CN4-OUT should be connected to the CN3-IN terminal of the next Drive (slave station).

Connectors	Pin	Name	Function
	1	TX+	Send data +
	2	TX-	Send data -
	3	RX+	Receive data +
	4	-	-
	5	1	-
	6	RX-	Receive data -
	7	-	-
	8	-	-
	Shell	PE	Protecting earthing (shield)

Cable Description


Use category 5 (CAT5e SF/UTP) Ethernet communications cables for network connections. Metal shielded connectors are recommended to prevent signal interference.

3.7.2 USB Communication Cable

Connects your PC to a Drive with a USB Communication Cable, in order to make the online operation of ESView V4.

Connection Diagram

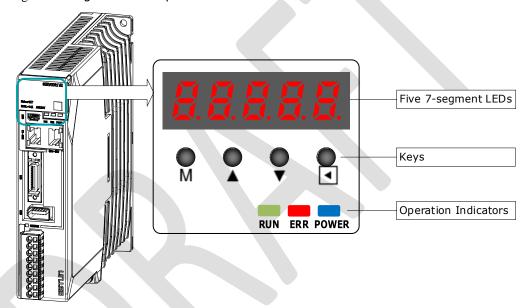
Cable Description

You can purchase the **USB Communication Cable** provided by Trio, or you can purchase the commercially available products yourself.

The plug connected to your PC is USB Type-A, and the plug connected to the Drive is Mini USB Type-B.

Chapter 4 Basic Settings

You can implement the functions of parameter setting, display, monitoring, alarm, adjustment, etc. of the Drive in the following two ways.

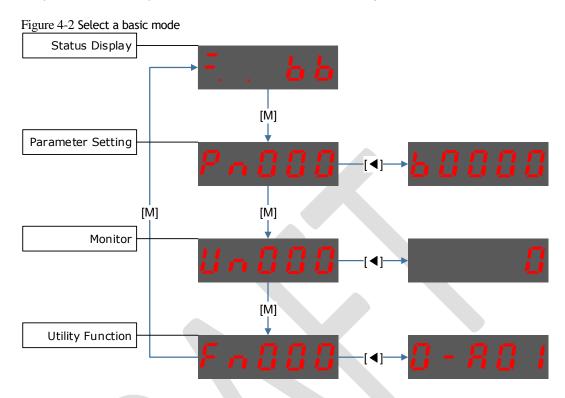

- Use the Panel Operator of the Drive
- Use the ESView V4 (Recommended)

4.1 Panel Operator

4.1.1 Key Names and Functions

There is a Panel Operator on the front of the Drive, as is shown in Figure 4-1.

Figure 4-1 Diagram of Panel Operator

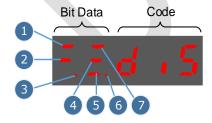


The names and functions of the keys on the Panel Operator are as follows.

Key	Functions	
М	Press [M] key to select a basic mode, such as the status display mode, utility function mode, parameter setting mode, or monitor mode.	
A	Press [▲] Key to increase the set value.	
▼	Press [▼] Key to decrease the set value.	
•	 Data setting key To display parameter setting and set value. To shift to the next digit on the left. 	

4.1.2 Basic Mode Selection

The basic modes include: Status Display Mode, Parameter Setting Mode, Utility Function Mode, and Monitor Mode. Select a basic mode with [M] key to display the operation status, set parameters and operation references, as is shown in Figure 4-2.



4.1.3 Status Display Mode

Power ON the Drive and wait for a while, the Panel Operator will initially display the Servo Status.

The information displayed by the status is divided into two parts:

- The first two digits are called Bit Data, what indicates the signal states during the operation of Drive.
- The last three digits are called **Code**, what indicates the operation states of Drive.

The display meaning of each segment on Bit Data are shown in Table 4-1, and they have different meanings under Speed or Torque Control Mode and Position Control Mode.

Table 4-1 Display meaning of each segment on Bit Data

No	Speed or Torque Control Mode		Position Control Mode	
NO	Meaning	Description	Meaning	Description
1	Speed Coincidence (VCMP)	Lit when the difference between the Motor speed and reference speed is the same as or less than the value set in Pn501 (Default setting is 10 rpm). Always lit in Torque Control Mode.	Positioning Completion (COIN)	Lit if error between position reference and actual Motor position is below preset value in Pn500 (Default setting is 10 pulses).
2	Servo OFF	Lit when servo is off. Not lit when servo is on.	Servo OFF	Lit when servo is off. Not lit when servo is on.
3	Control Power ON	Lit when Drive control power is ON.	Control Power ON	Lit when Drive control power is ON.
4	Speed Reference Input	Lit if input speed reference exceeds the value preset in Pn503 (Default setting is 20 rpm).	Reference Pulse Input	Lit if reference pulse is input.
5	Torque Reference Input	Lit if input torque reference exceeds preset value (10% rated torque is standard setting).	Deviation Counter Clear Signal Input	Lit when deviation counter clear signal is input.
6	Power Ready	Lit when main power supply circuit is normal.	Power Ready	Lit when main power supply circuit is normal.
7	Rotation Detection (TGON)	Lit if Motor speed exceeds the value preset in Pn503 (Default setting is 20 rpm).	Rotation Detection (TGON)	Lit if Motor speed exceeds the value preset in Pn503 (Default setting is 20 rpm).

The display meanings of Code are shown in Table 4-2.

Table 4-2 Display meanings of Code

Table 4-2 Display meanings of Co	Meaning
E	Servo initialization failed (check the encoder connection)
d .5	Servo OFF (Motor Power OFF)
indy	Servo Ready
i. run	Run Servo ON (Motor Power ON)
5. 5EP	Quick Stop State
FLE	Servo Alarm State
E SAF	Safe State
Fat	Forward Drive Prohibited
F. nat	Reverse Drive Prohibited
i. at	(Forward and Reverse) Overtravel State
IOTE: When the Drive is in Serve Marro	Alarm Number Display

NOTE: When the Drive is in Servo Alarm State, you shall check and correct the fault according to the Alarm Number Display, and then, you can press [◀] key to try to clear the current alarm.

4.1.4 Parameter Setting Mode

Functions can be selected or adjusted by setting parameters. There are two types of parameters.

- Function Parameters: the functions allocated to each digit of the Panel Operator can be selected.
- Adjustment Parameters: a parameter is set to a value within the specified range of the parameter.

For a description of the parameter settings, please refer to the section Chapter 11 Parameters.

Function Parameters Setting

The example below shows how to change parameter Pn003 (Application Function Selections 3) from **0000** to **1032**.

Step 1 Press [M] key several times to select the Parameter Setting Mode.

Step 2 Press [▲] key or [▼] key to select the parameter Pn003.

Step 3 Press [◀] key to display the current value of Pn003.

Step 4 Press and hold [◄] key for 1 second or more, and then a flashing decimal point will appear at the bottom right of the 5th digit.

Step 5 Press [▲] key twice, changing the value of the 5th digit from 0 to 2.

Step 6 Press [◀] key once, moving the flashing decimal point to the 4th digit.

Step 7 Press [▲] key three times, changing the value of the 4th digit from 0 to 3.

Step 8 Press [◀] key twice, moving the flashing decimal point to the 2nd digit.

Step 9 Press $[\blacktriangle]$ key once, changing the value of the 2nd digit from 0 to 1.

Step 10 Press and hold [◄] key for 1 second or more to return to the display of the Pn003 parameter value, or press the [M] key to return to the display of the Pn003.

After completing the function parameters setting, restart the Drive to take effect.

----End

Adjustment Parameters Setting

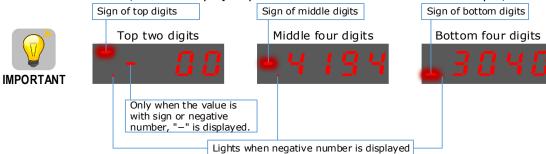
The example below shows how to change parameter Pn102 (Speed Loop Gain) from 100 to 85.

Step 1 Press [M] key several times to select the Parameter Setting Mode.

Step 2 Press [▲] key or [▼] key to select the parameter Pn102.

Step 3 Press [◀] key to display the current value of Pn102.

Step 4 Press [▲] key or [▼] key to change the value to 00085.


Press and hold $[\blacktriangle]$ key or $[\blacktriangledown]$ key to jump the setting value quickly.

Step 5 Press [◀] key or [M] key to return to the display of Pn102.

----End

Panel Operator can only display 5 digits. The value of some adjustment parameters will be 6 digits or more. The display of the parameter values is as follows (take the display of parameter value -41943040 as an example).

The example below shows how to change parameter Pn504 (Deviation Counter Overflow Alarm) from **41943040** to **42943240**.

Step 1 Press [M] key several times to select the Parameter Setting Mode.

Step 2 Press [▲] key or [▼] key to select the parameter Pn504.

Step 3 Press [◀] key to display bottom four digits of the current value of Pn504.

Step 4 Press and hold [◄] key for 1 second or more, and then a flashing decimal point will appear at the bottom right of the 5th digit.

Step 5 Press [◀] key twice, moving the flashing decimal point to the 3rd digit.

Step 6 Press $[\blacktriangle]$ key twice, changing the value of the 3rd digit from 0 to 2.

Step 7 Press [◄] key four times, moving the flashing decimal point to the 3rd of middle four digits.

Step 8 Press $[\blacktriangle]$ key once, changing the value of the 3rd digit from 1 to 2.

Step 9 Press and hold [◄] key for 1 second or more to return to the display of the Pn504 parameter value, or press the [M] key to return to the display of the Pn504.

----End

4.1.5 Monitor Mode

The Monitor Mode can be used for monitoring the reference values, I/O signal status, and Drive internal status.

The Monitor Mode can be selected during Motor operation.

Select Monitor Mode

The example below shows how to display, the contents of monitor number Un003 (when the Motor rotates at 100).

Step 1 Press [M] key several times to select the Monitor Mode.

Step 2 Press [▲] key or [▼] key to select the monitor number Un003.

Step 3 Press [◀] key to display the data of Un003.

Step 4 Press [◀] key to return to the display of Un003.

----End

Contents of Monitor Mode Display

Monitor Number	Content of Display	Unit
Un000	Motor speed	rpm
Un003	Internal torque reference (in percentage to the rated torque)	%
Un004	Encoder Rotation angle pulse number	1 pulse
Un005	Input signal monitor (lit for low level)	_
Un006	Touch Probe input signal monitor	_
Un007	Output signal monitor	_
Un008	Reserved	_

Monitor Number	Content of Display	Unit
Un009	Input reference pulse counter	1 pulse
Un011	Pulse deviation counter	1 pulse
Un013	Reference pulse	1 pulse
Un015	Load Inertia Percentage	%
Un016	Motor Overload Ratio	%
Un019	Busbar Voltage	٧
Un021	Encoder temperature	°C
Un022	Main board temperature	°C

The status (low level or high level) of input signal allocated to each input terminal is displayed.

Display	Monitor No.	Description
7 6 5 4 3 2 1 0	Un005	0: CN1-14 (lit for low level, not lit for high level) 1: CN1-15 (lit for low level, not lit for high level) 2: CN1-16 (lit for low level, not lit for high level) 3: CN1-17 (lit for low level, not lit for high level) 4: CN1-18 (lit for low level, not lit for high level)
	Un006	6: EXT1 (Touch Probe Input 1) 7: EXT2 (Touch Probe Input 2)
	Un007	0: CN1-6, 7 1: CN1-8, 9 2: CN1-10, 11

NOTE: Un007 represents the state of the output signal. The optocoupler ON and OFF of each output signal depends on whether the output signal is inverted:

If the signal is not inverted, lit for turning the optocoupler ON, and not lit for turning the optocoupler OFF.

If the signal is inverted, lit for turning the optocoupler OFF, and not lit for turning the optocoupler ON.

4.1.6 Utility Function Mode

This section describes how to apply the basic operations using the Panel Operator to run and adjust the Motor.

The following table shows the parameters in the Utility Function Mode.

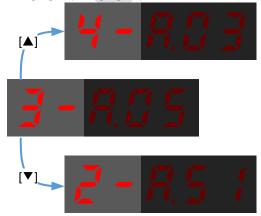
Function Number	Name	
Fn000	Alarm trace data display	
Fn001	Initialize parameter settings	
Fn002	JOG operation	

Function Number	Name
Fn005	Automatic offset-adjustment of Motor current detection signal
Fn006	Manual offset-adjustment of Motor current detection signal
Fn007	Software version display
Fn009	Load inertia identification
Fn010	Absolute encoder multi-turn reset
Fn011	Absolute encoder alarm reset
Fn017	Auto-tuning tool
Fn018	PJOG operation

Fn000 (Alarm trace data display)

The alarm trace data display can display up to ten previously occurred alarms. The following are the steps to display the alarm trace data.

Step 1 Press [M] key several times to select the Utility Function Mode.


Step 2 Press [▲] key or [▼] key to select the function number Fn000.

Step 3 Press [◀] key to display latest alarm number.

Step 4 Press $[\blacktriangle]$ key or $[\blacktriangledown]$ key to view the other alarm data.

Step 5 Press the [◄] key to return to the display of the Fn000.

Press and hold [◄] key for 1 second or more to clear all the alarm trace data.

----End

Fn001 (Initialize parameter settings)

The following are the steps to initialize parameter settings.

Step 1 Press [M] key several times to select the Utility Function Mode.

Step 2 Press [▲] key or [▼] key to select the function number Fn001.

Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press and hold [◄] key for 1 second to initialize the parameter settings, until Panel Operator displays and blinks **done**, which indicates the initialization of parameter setting has been completed.

Step 5 Release [◀] key to return to the display of the Fn001.

----End

Fn002 (JOG operation)

This utility function often used for trial operation, refers to the section 8.3.3 JOG Operation.

Fn005 (Automatic offset-adjustment of Motor current detection signal)

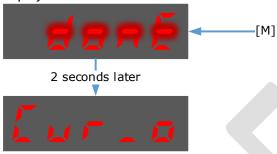
Motor current detection offset adjustment has performed before shipping. Basically, the user need not perform this adjustment.

IMPORTANT

- Execute the automatic offset adjustment if the torque ripple is too big when compared with that of other Drives.
- Execute the automatic offset adjustment in the servo OFF state.

The following are the steps to execute the automatic offset adjustment.

Step 1 Press [M] key several times to select the Utility Function Mode.


Step 2 Press [▲] key or [▼] key to select the function number Fn005.

Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press [M] key to execute the automatic offset adjustment.
Panel Operator displays and blinks done, and 2 seconds later, it will return to previous display.

Step 5 Press the [◀] key to return to the display of the Fn005.

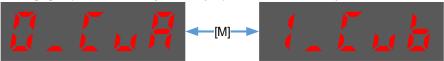
----End

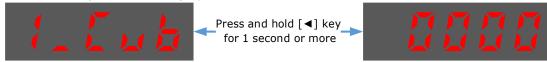
Fn006 (Manual offset-adjustment of Motor current detection signal)

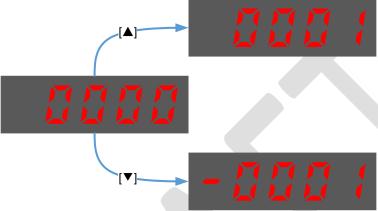
To adjust the offset, perform the automatic adjustment (Fn005) first. And if the torque ripple is still big after the automatic adjustment, perform the manual offset-adjustment as follow.

- Please carefully execute the manual offset-adjustment, in case worsen the characteristics of the Motor.
- When executing the manual offset-adjustment, run the Motor at a speed of approximately 100 rpm, and adjust the phase-U and phase-V offsets alternately several times until the torque ripple is minimized.

Step 1 Press [M] key several times to select the Utility Function Mode.


Step 2 Press [▲] key or [▼] key to select the function number Fn006.


Step 3 Press [◀] key, and Panel Operator displays as below.


Step 4 Press [M] key for switching the display between 0_CuA (phase-U) and 1_Cub (phase-V).

Step 5 Select one phase display (e.g. 1_Cub, phase-V), and press and hold [◀] key for 1 second or more, Panel Operator will display the current offset value.

Step 6 Press $[\blacktriangle]$ key or $[\blacktriangledown]$ key to change the offset value.

NOTE: the offset can be adjusted from -1024 to 1024.

Step 7 Press and hold [◄] key for 1 second or more to return to the phase display.

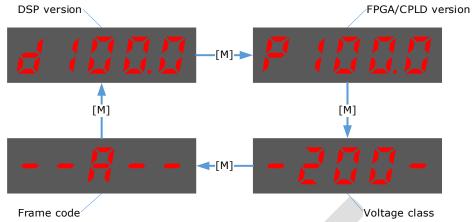
Step 8 Press $[\blacktriangleleft]$ key to return to the display of the Fn006.

----End

Fn007 (Software version display)

The following are the steps to display the software versions.

Step 1 Press [M] key several times to select the Utility Function Mode.



Step 2 Press [▲] key or [▼] key to select the function number Fn007.

Step 3 Press [◀] key to display the software versions.

Step 4 Press [M] key serval time to display between DSP version, FPGA/CPLD version, Voltage class and Structure code.

Step 5 Press [◀] key to return to the display of the Fn007.

----End

Fn009 (Load inertia identification)

This utility function often used for tuning, refers to the section 9.7.1 Load Inertia Identification.

Fn010 (Absolute encoder multi-turn reset)

- The clearing of multiturn data from the absolute encoder needs to be performed in the Servo OFF state.
- Before the driver is officially used, please perform a "clear multiturn data of the absolute encoder" operation.
- Step 1 Press [M] key several times to select the Utility Function Mode.

Step 2 Press [▲] key or [▼] key to select the function number Fn010.

Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press [M] key to reset the absolute encoder multi-turn data.

Step 5 Press [◀] key to return to the display of the Fn010.

----End

Fn011 (Absolute encoder alarm reset)

- The clearing of multiturn data from the absolute encoder needs to be performed in the Servo OFF state.
- After the A.47 and A.48 alarms occur in the drive, the user needs to replace the encoder battery, see "3.5.3 Installing or Replacing the Battery". After the replacement is complete, the alarm can be cleared by Fn011.

Step 1 Press [M] key several times to select the Utility Function Mode.

Step 2 Press [▲] key or [▼] key to select the function number Fn011.

Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press [M] key to reset the absolute encoder multi-turn data.

Step 5 Press [◀] key to return to the display of the Fn011.

----End

Fn017 (Auto-tuning tool)

This utility function often use used for tuning, refers to the section 9.3.2 Auto-Tuning Tool.

Fn018 (PJOG operation)

This utility function often used for trial operation, refers to the section 8.5 Program Jogging.

4.2 ESView V4

4.2.1 Installation

System Requirements

You need to provide for your own personal computer that meets the following basic hardware requirements.

Item	Description	
	Windows 7 (32-bit or 64-bit)	
os	Windows 10 (32-bit or 64-bit)	
	English (US), Chinese (Simply) version of the OS above.	
СРИ	1.6 GHz processor or more	
Momony	System memory of 1 GB or more	
Memory	Graphics memory of 64 MB or more	
Hard Disk	Free space of 1GB or more	
Communication	USB; RJ45	
Display 1,024×768 PIXEL or more 24bit color (TrueColor) or more		

Preparation

Please prepare the Windows operating system, communication cable, and a decompression software in advance.

Visit Trio official website www.triomotion.com to find and download ESView V4 on Technical Support > Download for getting the compressed file. For help, please contact Trio.

- Turn on the power supply of PC and start Windows. (Close down other software running.)
- Copy ESView V4 compressed file into an appropriate folder.
- Disconnect if the Drive is connected to the PC with the cable.

Install Software

Close other running software before installing the software and confirm that the Windows user has administrator privileges.

- Step 1 Extract the ESView V4 compressed file in an appropriate directory of your PC.
- Step 2 Double click the *ESView V4* installation program.

 The installation program will automatically start, as shown in the Figure 4-3.

Figure 4-3 Start to install ESView V4 Setup

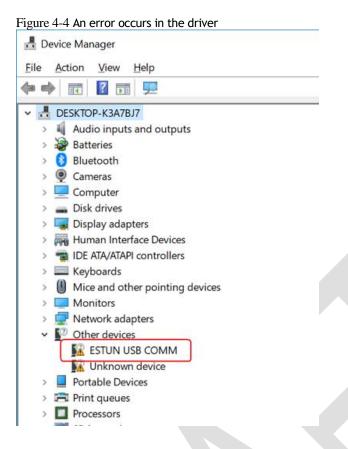
Welcome to the ESView V4 Setup Wizard

The Setup Wizard will install ESView V4 on your computer.
Click Next to continue or Cancel to exit the Setup Wizard.

Step 3 Follow the instructions of the installation wizard to install ESView V4 to your PC.

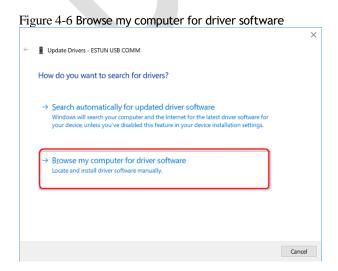
----End

Install USB Driver

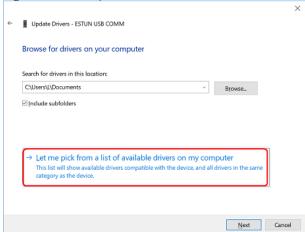

After installing the ESView V4 software successfully, you may also need to install the USB driver. If you have successfully installed a USB drive, you can skip what is described in this section, otherwise follow the steps below to install the USB driver.

IMPORTANT

Since the USB Driver can only support one designated port, you shall reinstall the USB Driver if you replaced another port on the PC side, or you can use the previous port.


- Step 1 After installing the ESView V4 software successfully, connect the Drive to the PC by using the USB connection cable.
- Step 2 Open the main directory of ESView V4 software (default location is C:\ESView V4\), and extract the USB Drivers.rar compressed file to an appropriate directory of your PC.
- Step 3 Open Device Manager.
 - For Win7 OS, select Start > Control Panel.
 Click Device Manager on the displayed All Control Panel Items.
 - For Win10 OS, just right-click Start, and select Device Manager on the pop-up menu.
- Step 4 An exclamatory mark attaches to the option **Other devices** > **ESTUN USB COMM** in **Device Manager** window, which indicates an error occurs in the driver and needs to update, as shown in Figure 4-4.

Step 5 Right-click ESTUN USB COMM, and select Update driver on the pop-up menu.



Step 6 Click Browse my computer for driver software on the Update Drivers dialog box.

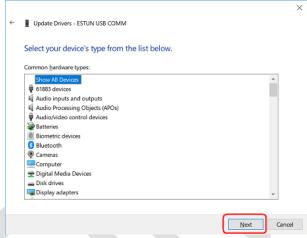

Step 7 Click Let me pick from a list of available drivers on my computer.

Figure 4-7 Let me pick from a list of available drivers on my computer

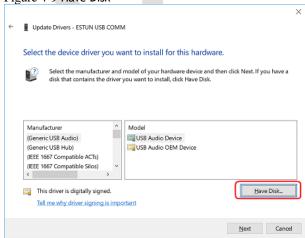

Step 8 Click Next.

Figure 4-8 Select your device's type from the list below

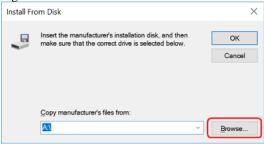
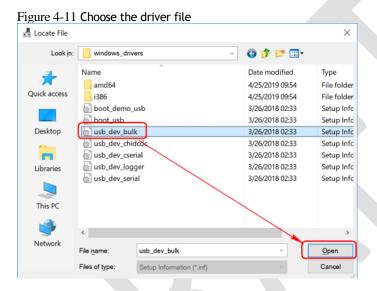
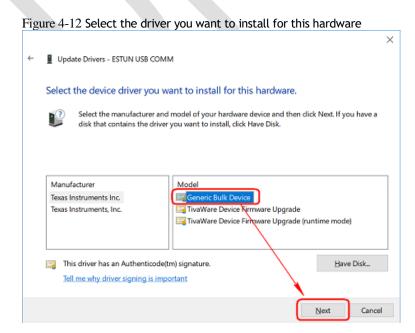

Step 9 Click Have Disk.

Figure 4-9 Have Disk



Step 10 Click Browse on the Install From Disk dialog box.


Figure 4-10 Install From Disk

- Step 11 Set the **Look in** as the directory of *ESView V4* decompressed file *USB Drivers\windows_drivers* on the **Locate File** dialog box.
- Step 12 Choose usb_dev_bulk.inf, and then click Open.

- Step 13 Click OK on the Install From Disk dialog box.
- Step 14 Choose Generic Bulk Device, and then click Next.

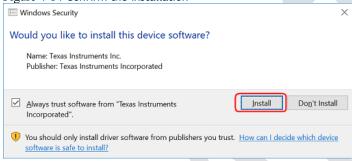
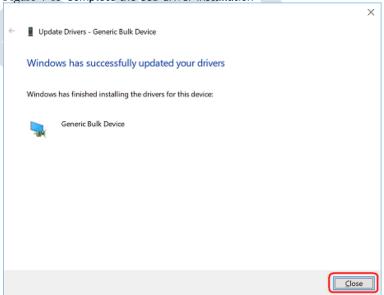

Step 15 Click Yes on the Update Driver Warning dialog box.

Figure 4-13 Confirm the driver updating

Step 16 Wait for a while, and then click Install on the Windows Security dialog box.


Figure 4-14 Confirm the installation

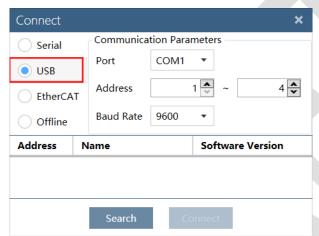
Step 17 The driver will be automatically installed to your PC, and then the installation result will be displayed.

Click Close to complete the USB driver installation.

Figure 4-15 Complete the USB driver installation

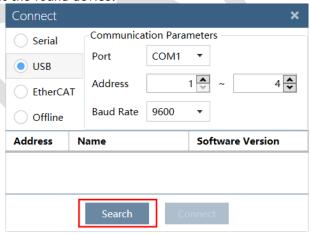
----End

4.2.2 Start ESView V4

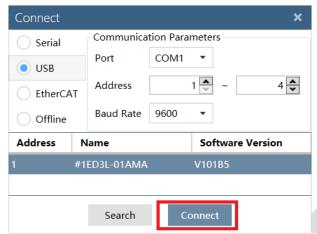

Online Operation

The parameters only can be written into or read from the Drive under the online operation. It is recommended that you perform an online operation for the first time to set the Drive.

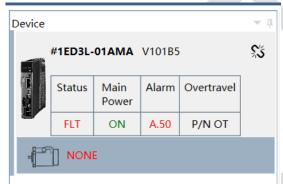
You need to connect the Drive to the PC by using the USB connection cable before the online operation.


- Step 1 Connect the Drive to the PC by using the USB connection cable.
- Step 2 Select **Programs** > **ESView V4** > **ESView V4** from the Windows **Start** Menu. Also, you can find and click *ESView V4* shortcut on the desktop of Windows.
- Step 3 The Connect dialog box will be displayed.

 If you had started ESView V4, select Home > Connect in the Menu Bar.
- Step 4 Select USB.


Step 5 Click Search.

Step 6 Select the found device.



Step 7 Click Connect.

Step 8 The connected device will be displayed in the **Device** list on the left of the *ESView V4* main windows.

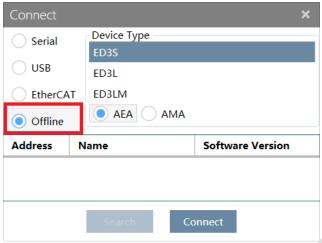
Now, you can make the necessary settings for the Drive or Motor in real time.

The **Device** list can display all the device you had connected or created (including online and offline), and their basic status.

If you want to delete a device from the **Device** list, click \mathfrak{S} in the top right, and then click **OK** on the pop-up warning box.

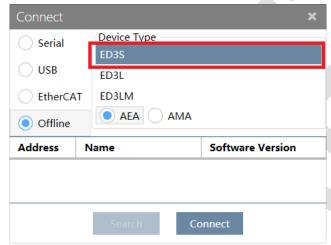
----End

Offline Operation


In offline operation, users do not need to connect any equipment, can perform oscilloscope, FFT, mechanical analysis and other image operations.

Although it is not necessary to connect the actual drive, some functions are limited and cannot be set correctly.

- Step 1 Select **Programs** > **ESView V4** > **ESView V4** from the Windows **Start** Menu. Also, you can find and click *ESView V4* shortcut on the desktop of Windows.
- Step 2 The **Connect** dialog box will be displayed.


 If you had started *ESView V4*, select **Home** > **Connect** in the **Menu** Bar.

Step 3 Select Offline.

Step 4 Select the desired **Device Type**, e.g. ED3S.

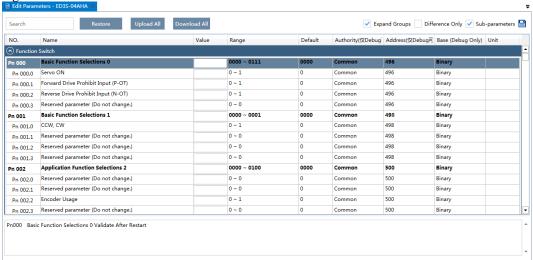
Step 5 Click Connect.

Step 6 The created device will be displayed in the **Device** list on the left of the *ESView V4* main windows.

Since there is no online connection to a Drive, the functions that you can use are restricted.

----End

4.2.3 Edit Parameters

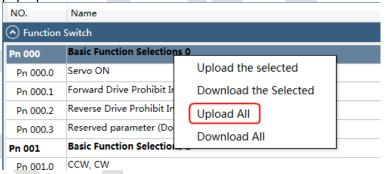

Follow the below procedure to open the Edit Parameters window.

Step 1 Select Parameters > Edit Parameters in the Menu Bar of the ESView V4 main windows.

Step 2 The Edit Parameters window will be displayed in Function Display Area.

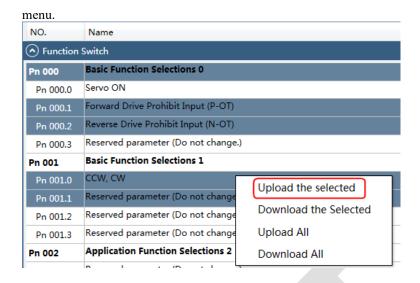
Figure 4-17 Edit Parameters window

Upload Parameters


Upload All

In order to read all parameters from the Drive and fill them into **Value** column of the parameters list, you can:

- Click Upload All in the Edit Parameters window.



 Right-click the parameters list where cannot be edited, and select Upload All in the pop-up menu.

Upload the Selected

Drag the mouse to select the desired parameters, or you can hold **Ctrl** key and click the desired parameter, and then right-click a selected parameter, and select **Upload the selected** in the pop-up

You can only fulfill the **Upload Parameter** function in **Online operation**. If a warning dialog box **Unable to upload the parameters** is displayed, check the connection between PC and the Drive.

Modify Parameters

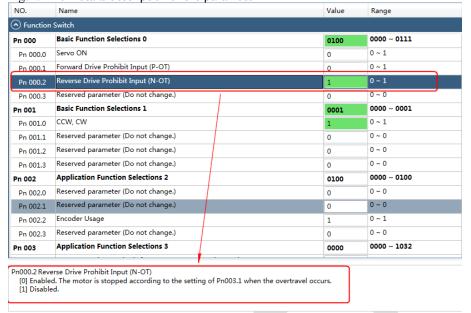

When the parameters have been uploaded from the device, you can modify them on the **Value** column. If a value has been modified, the background of the textbox can be changed, as shown in Figure 4-18.

Figure 4-18 Display after editing parameters

You can refer to the description displayed on the underside of the parameter list for the parameter modification.

Figure 4-19 Details description of the parameter

Click **Search** input box on the **Edit Parameters** window, and type the keyword you want to search. The keyword, including **NO**, **Name**, **Value**, **Range**, **Default**, **Unit**, as well as description of each parameter.

If you want to search multiple items at once, add one or more space between keywords that lists all the parameters that match any of the keywords.

Save Parameters

Follow the below procedure to save the current settings as an offline file into the PC.

Step 1 Click in the Edit Parameters window.

Figure 4-20 Save the parameters

- Step 2 Choose the desired files in the Save As dialog box.
- Step 3 Click Save.

----End

Import Parameters

You can fulfill Import function, importing the offline parameters file into the online Drive.

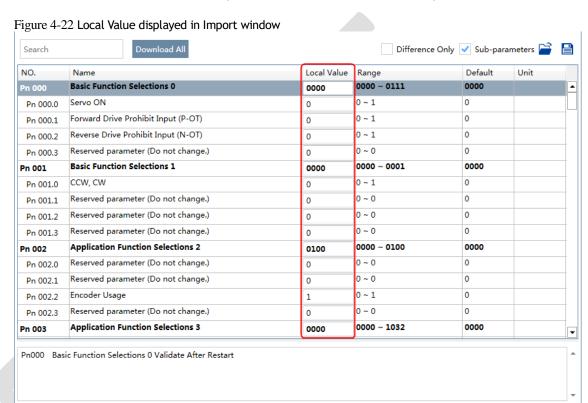

Step 1 Select Parameters > Import in the Menu Bar of the ESView V4 main windows.

Figure 4-21 Select Import

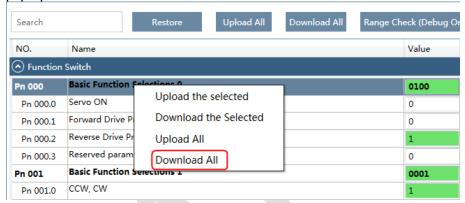
- Step 2 Select a proper offline parameter file (*.esvpa) in the pop-up Open dialog box.
- Step 3 The Import window will be displayed in Function Display Area.

And, the Local Value in the offline parameters file are filled into the parameter list.

Step 4 Before importing parameters into the Drive, you can edit and download the parameters.

----End

Download Parameters


Download All

In order to write all parameters of the parameters list into the Drive, you can:

- Click Download All in the Edit Parameters window.

 Right-click the parameters list where cannot be edited, and select **Download All** in the pop-up menu.

· Download the Selected

Drag the mouse to select the desired parameters, or you can hold **Ctrl** key and click the desired parameter, and then right-click a selected parameter, and select **Download the Selected** in the pop-up menu.

You can only fulfill the Download Parameter function in **Online Operation**. If a warning dialog box **Unable to download the parameters** is displayed, check the connection between PC and the Drive.


Restore Parameters

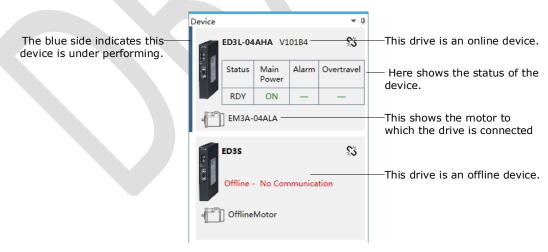
Make sure that it is necessary to restore the parameters as default setting before fulfilling the **Restore Parameters** function.

Step 1 Click Restore in the Edit Parameters window.

Figure 4-23 Restore parameters

Step 2 Read the content on the warning dialog box and click OK.

Figure 4-24 Confirm the parameter restored


Step 3 ESView V4 will send the Restore Parameters command to the Drive, and then the Drive will execute the Restore Parameters.

----End

4.2.4 Monitor

Device Status

The **Device** list can display all the device you had connected or created (including online and offline), and their basic status.



IO Monitor

Use the **Monitor** function for displaying the main parameters of the device and the I/O signal information.

Step 1 Select Monitor > Monitor in the Menu Bar of the ESView V4 main windows.

Figure 4-25 Select Monitor



You can also move the cursor upon **Monitor** on the right side of the main window of *ESView V4* and stay for a while, the **Monitor List** will be displayed.

Step 2 The Monitor List will display the information of DATA MONITOR and I/O MONITOR.

Figure 4-26 Monitor List

----End

Chapter 5 Application Functions

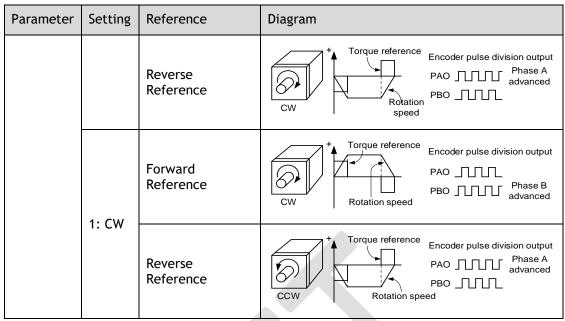
5.1 Power Supply

The main circuit and control circuit of the Drive can be operated with AC power input. When AC power input is selected, single- phase or three phase power input can be used. You shall to set the parameter Pn007.1 and Pn007.3 (use AC power input) according to the applicable power supply.

Parameter	Setting	Meaning	When Enabled	
	0	Use a single-phase AC power supply.		
Pn007.1 1 [Default]		Use a three-phase AC power supply. NOTE: This setting is invalid for the Drive power from 50W to 400W.	After restart	
Pn007.3	0	AC power supply frequency is 50Hz.		
P11007.3	1	AC power supply frequency is 60Hz.		

An alarm A.24 (Main Circuit Power Supply Wiring Error) may be occurred if the setting of Pn007.1 be consonant with not match the applicable power supply.

 When using AC power supply and DC power supply to connect to the driver, please make a terminal connection.
 Ac power supply should be connected to the L1/L2/L3 terminals and L1C/L2C terminals of the driver.


- DC power supply should be connected to the B1/decile terminal and one terminal and L1C/L2C terminal of the driver.
- Before using the DC power input, please be sure to set Pn007.1=2 before entering the main loop to avoid burning the internal components of the driver
- When the DC power supply is input, set the fuse on the power supply wiring.
- No regeneration is performed when using the DC power input, so please perform regenerative energy treatment on the power supply side.

5.2 Motor Rotation Direction

You can reverse the direction of Motor rotation by changing the setting of Pn001.0.

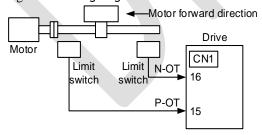
The default setting for Forward Rotation is counterclockwise (CCW) as viewed from the Drive end.

Parameter	Setting	Reference	Diagram
Pn001.0	0: CCW	Forward Reference	Torque reference Encoder pulse division output PAO III Phase B Rotation speed

NOTE: The torque reference and Motor speed in the above table indicate the tracking waveform in ESViewV4.

5.3 Overtravel Limit

5.3.1 Function Description


Overtravel is a safety function of the Drive that forces the Motor to stop in response to a signal input from a limit switch that is activated when a moving part of the machine exceeds the safe range of movement.

The overtravel signals include the P-OT (Forward Drive Prohibit) and the N-OT (Reverse Drive Prohibit) signals.

You use the P-OT and N-OT signals to stop the machine by installing limit switches at the positions where you want to stop the machine that is operated by the Motor.

An example of wiring for the P-OT signal and the N-OT signal is shown in Figure 5-1.

Figure 5-1 Wiring diagram for the overtravel

Using the overtravel function is not necessary for rotating applications such as rotary tables and conveyors. No wiring for overtravel input signals is required.

- To prevent accidents that may result from contact faults or disconnections, use normally closed limit switches.
 Moreover, never change the default settings of the polarity of the overtravel signals (P-OT and N-OT).
- When using the Motor on a vertical axis, the workpiece may fall in the overtravel condition. To prevent this, always set the zero clamp after stopping with Pn003.1=2.

5.3.2 Connecting the Overtravel Signal

To use the overtravel function, connect the following overtravel limit switch input signal terminals.

Туре	Name	Pin	Setting	Meaning
	P-OT	CN1-15	ON	Forward run allowed. Normal operation status.
Innut			OFF	Forward run prohibited. Forward overtravel.
Input	N-OT	CN1-16	ON	Reverse run allowed. Normal operation status.
			OFF	Reverse run prohibited. Reverse overtravel.

5.3.3 Enabling/Disabling the Overtravel Signal

Parameters can be set to disable the overtravel signal. If the parameters are set, there is no need to wire the overtravel input signal.

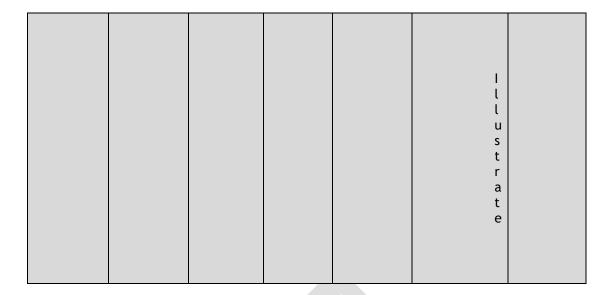
Parameter	Setting	Meaning	When Enabled
2 000 4	0 [Default]	Inputs the Forward Drive Prohibited (P-OT) signal from CN1-16. [Default]	Afterware
Pn000.1	1	Disables the Forward Drive Prohibited (P-OT) signal. (Always allow forward rotation)	
Pn000.2	0 [Default]	Inputs the Reverse Drive Prohibited (N-OT) signal from CN1-15. [Default]	After restart
	1	Disables the Reverse Drive Prohibited (N-OT) signal. (Always allow reverse rotation)	

In addition, you can disable the overtravel limit function by not set the values 1 and 2 to parameter Pn509 (not allocate the P-OT signal and N-OT signal).

5.4 Settings for E-STOP

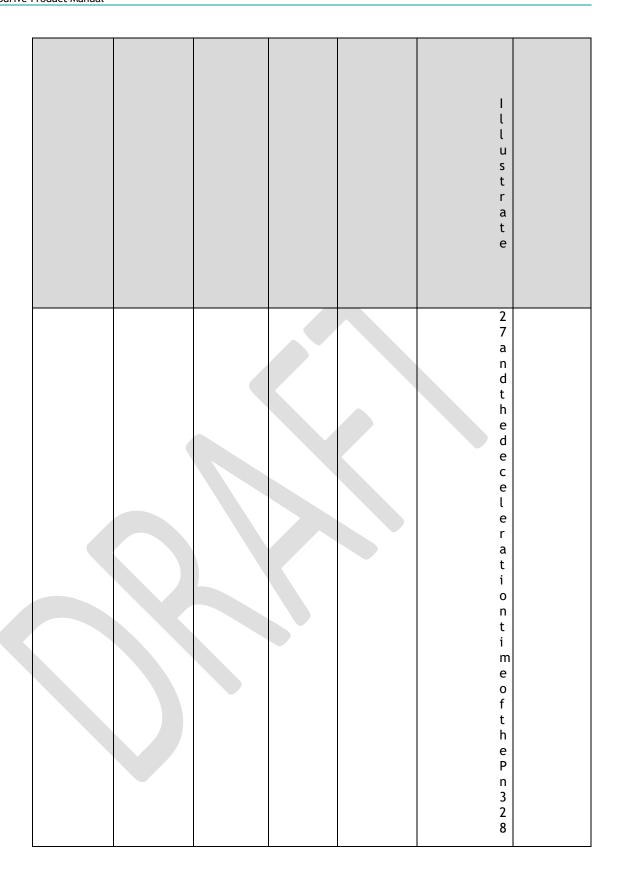
The E-Stop function refers to the function of forcing the stop of the servo motor by signals from the host device or external device. When using forced stop, the assignment of the forced stop input (E-Stop) signal is required (Pn509=n.XXXX/Pn510=n. $\square\square\squareX$). There are three types of motor stop modes: DB brake stop, free stop and deceleration stop.

Do not assign 0xA to the input signal port without using the E-Stop function. Otherwise, please perform the shutdown through the E-Stop signal, and you cannot perform Quick Stop to the shutdown by the control word 0x6040 object.

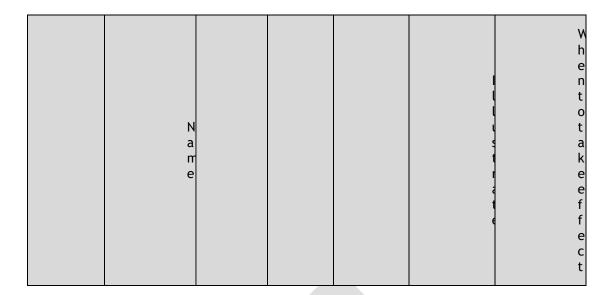

Signal distribution

C l a s s	Si g n al n a m	Conn ector pin numb er	Si g n al st at us	Meani ng
I n p	E- S T	Alloc ate on	ON	The devic e is functi oning prope rly
t	O P	dema nd	0 F F	The devic e is forced to stop

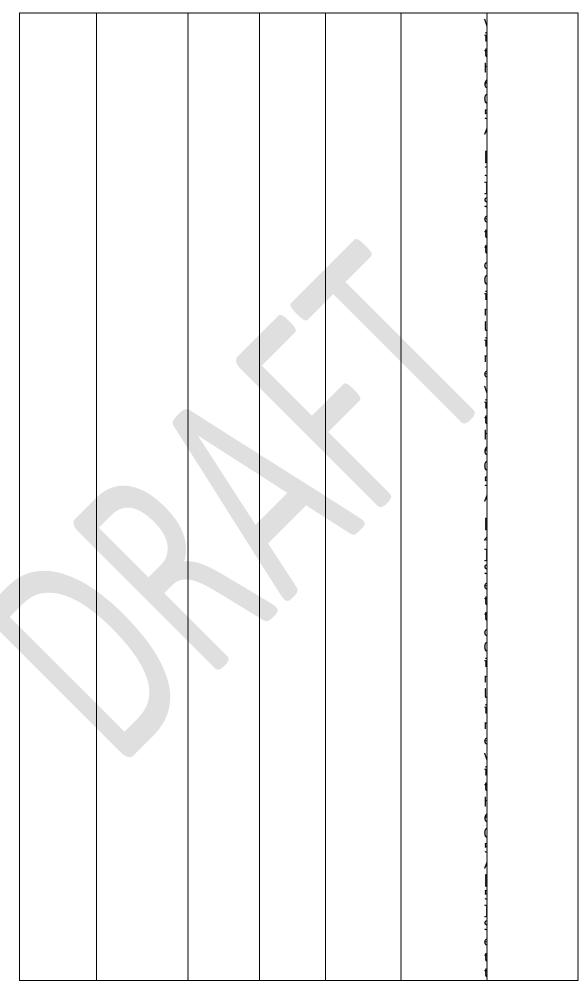
Note: For more information about THE DISTRIBUTION OF IO signals, see "5.8 IO Signal Assignment".


Force Stop feature selection of stop methods

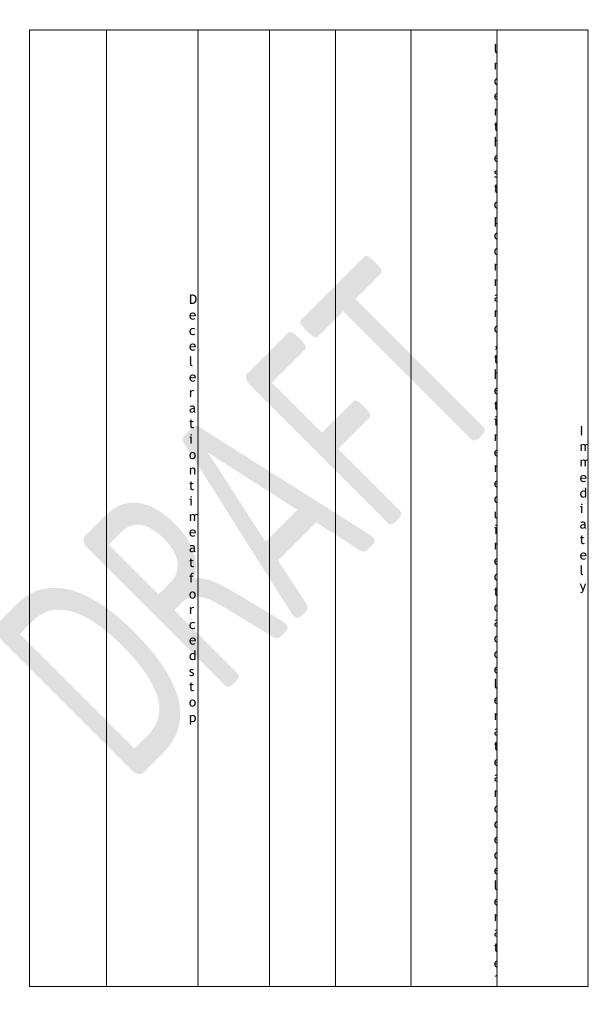
The stop method of the forced stop function is selected by Pn003.2 (the stop method at the time of forced stop).

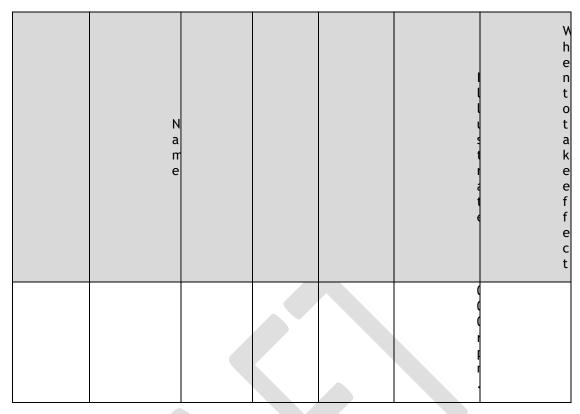


		6 0 8 5	
		o b j e c t s	
		t s	
		[1] T	
		T h e	
		m o t	
		o r i	
		s s t	
		o p p e d	
		a	
		c c o	
		r d i	
		n g t o	
		t h	
		e s t o	
		p m o	
		d e	
		o f t h	
		e P	
		n 3	

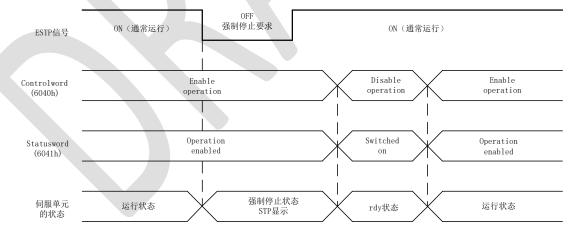

When setting servo OFF and strong stop

When the servo motor is stopped by setting the deceleration time of the servo motor, the stop mode (Pn327) and the deceleration time (Pn328) at the time of servo OFF and forced stop are set.





N a m e			Whent ot akeeffect



The method from forced stop recovery

The recovery method for stopping operation by forced stop input (E-STOP) signal is as follows.

If the servo ON command is received when the E-STOP signal IS OFF, the forced stop state is maintained even if the E-STOP signal is set to ON.

Enter the servo OFF command (Disable Operation command), enter the rdy state, please enter the servo ON command (Enable Operation command) again.

5.5 Motor Stopping Methods

You can use the following methods to stop the Motor when the servo is turned OFF, an alarm (Gr.1 or Gr.2) occurs, in Safe state or overtravel occurs.

Stop method	Meaning
Stopping by dynamic brake	The electric circuits are internally connected to stop the Motor quickly.

Stop method	Meaning
Coasting to a stop	The Motor stops naturally due to friction during operation.
Reverse brake	Emergency stop torque is used to decelerate the Motor to a stop.
Do not stop	Regards Alarms as the Warnings, and the Motor will not be stopped.

Also, you can let the Motor enter the following states after the Motor stops.

State after Stopping	Meaning
Coasting	The Drive does not control the Motor (The machine will move in response to a force from the load).
Dynamic Brake (DB)	The electric circuits are internally connected to hold the Motor.
Zero clamping	A position loop is created and the Motor remains stopped at a position reference of 0. (The current stop position is held.)
Operation	The state in which the Drive continues to control the Motor.

5.5.1 Motor Stop Methods for Gr.1 Alarms, Safety State and Servo OFF

You can select the Motor stopping methods for Gr.1 Alarms occur, in Safe state or Servo OFF by setting the parameter Pn003.0.

Parameter	Setting	Stop Method	After Stopping	When Enabled	
	0 [Default]	Stopping by dynamic brake	Coasting		
Pn003.0	1	Stopping by dynamic brake	Dynamic Brake	After restart	
	2	Coasting to a stop	Coasting		

5.5.2 Motor Stop Methods for Overtravel

You can select the Motor stopping methods for overtravel occurs by setting the parameter Pn003.1.

Parameter	Setting	Stop Method	After Stopping	When Enabled	
	0 [Default]	[Default] Stopping by dynamic brake			
Pn003.1	1	Stopping by dynamic brake	Dynamic Brake	After restart	
	2	Reverse brake	Zero clamping		
	3	Reverse brake	Coasting		

The speed reference is set to 0 during the reverse brake, so that the soft stat function is unavailable. In addition, you shall set a reverse brake torque for stopping the Motor (Pn405).

5.5.3 Motor Stop Methods for Gr.2 Alarms

You can select the Motor stopping methods for Gr.2 Alarms occur by setting the parameter Pn004.0.

Parameter	Setting	Stop Method	After Stopping	When Enabled	
	0 [Default]	Stop by dynamic brake	Coasting		
	1	Stop by dynamic brake	Dynamic Brake		
	2	Coast to a stop	Coast		
Pn004.0	3	Reverse brake	Dynamic Brake	After restart	
	4	Reverse brake	Coast		
	5	Do not stop, regard as a warning	Operation		

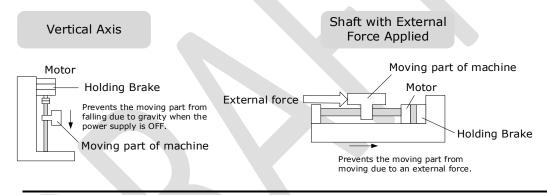
Even if set the parameter Pn004.0 to 5 (Do not stop, regard as a warning), you need to manually reset the system after troubleshooting.

5.5.4 Reverse Brake Torque Limit Setting

If Pn004.0 is set to 3 or 4, the Motor will be decelerated to a stop using the torque set in Pn405 as the maximum torque.

Parameter	Name	Range	Unit	Default	When Enabled
Pn405	Reverse Brake Torque Limit	0 to 350	%	300	Immediately

- This setting is a percentage of the rated torque.
- The default setting is 300%. This setting is large enough to allow you to operate the Motor at the maximum torque. However, the maximum stop torque that you can actually use is the maximum torque of the Motor.

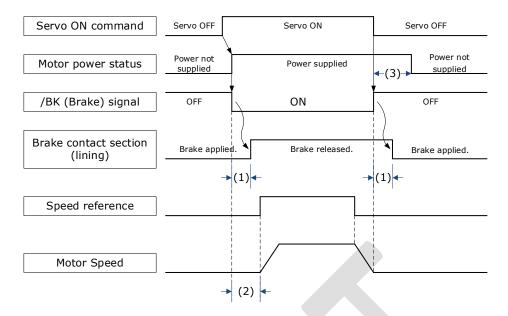

5.6 Holding Brake

5.6.1 Function Description

A holding brake is used to hold the position of the moving part of the machine when the Drive is turned OFF so that moving part does not move due to gravity or an external force.

You can use the brake that is built into a Motor with a Brake, or you can provide one on the machine.

The holding brake is used in the following cases.



The brake built into a Motor with a Brake is a de-energization brake. It is used only to hold the Motor and cannot be used for braking. Use the holding brake only to hold a Motor that is already stopped.

5.6.2 Brake Operating Sequence

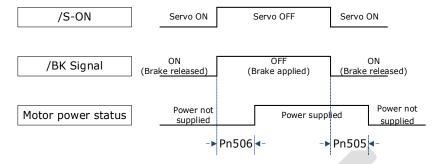
You must consider the time required to release the brake and the time required to brake to determine the brake operation timing, as described below.

- (1): The brake delay times for Motors with Holding Brakes.
- (2): Before you output a reference from the host controller to the Drive, wait for at least 50 ms plus the time required to release the brake after you send the S-ON command.
- (3): Use Pn506 (Servo OFF Waiting Time), Pn507 (Brake Enable Speed Threshold), and Pn508 (Brake Enable Waiting Time) to set the timing of when the brake will operate and when the servo will be turned OFF.

- Time Required to Release Brake: The time from when the /BK (Brake) signal is turned ON until the brake is actually released.
- Time Required to Brake: The time from when the /BK (Brake) signal is turned OFF until the brake actually operates.

5.6.3 /BK (Brake) Signal

The /BK signal is turned OFF (to operate the brake) when the Servo is turned OFF or when an alarm is detected. You can adjust the timing of brake operation (i.e., the timing of turning OFF the /BK signal) with the Servo OFF Waiting time (Pn506).


Туре	Signal	Pin	Signal Status	Meaning
Output	/DI/	Allocated by DaE44	ON	Releases the brake.
Output	/BK	Allocated by Pn511	OFF	Activates the brake.

The /BK signal is not allocated in default setting, set its allocation in Pn511.

Parameter	Setting	+ Pin	- Pin	Meaning	
Pn511.0	4	CN1-6	CN1-7	The /BK signal is output from CN1-6 and CN1-7.	
Pn511.1	4	CN1-10	CN1-11	The /BK signal is output from CN1-10 and CN1-11.	

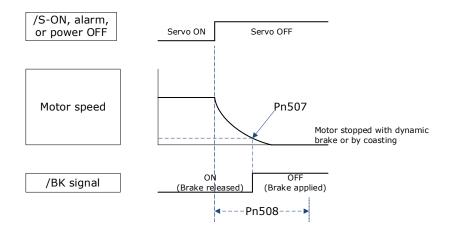
5.6.4 Output Timing of /BK Signal when Motor is Stopped

When the Motor is stopped, the /BK signal turns OFF as soon as the S-OFF (Servo OFF) command is received. Use the servo OFF delay time (Pn506) to change the timing to turn OFF power supply to the Motor after the S-OFF command is input.

Parameter	Name	Range	Unit	Default	When Enabled
Pn505	Servo ON Waiting Time	-2000 to 2000	ms	0	Immediately
Pn506	Servo OFF Waiting Time	0 to 500	10ms	0	Immediately

- Set Pn505 as a positive value, when S-ON command is received, the /BK signal will be output first, and then power supplied to the Motor after waiting for this setting.
- Set Pn505 as a negative value, when S-ON command is received, power supplied to the Motor immediately, and then output the /BK signal after waiting for this setting.

When the Motor is used to control a vertical axis, the machine moving part may move slightly due to gravity or an external force.


You can eliminate this slight motion by setting the servo OFF delay time (Pn506) so that power supply to the Motor is stopped after the brake is applied.

Power supply to the Motor will be stopped immediately when an alarm occurs, regardless of the setting of this parameter. The machine moving part may move due to gravity or an external force before the brake is applied.

5.6.5 Output Timing of /BK Signal when Motor is operating

If an alarm occurs or S-OFF command is received while the Motor is operating, the Motor will start stopping and the /BK signal will be turned OFF. You can adjust the timing of /BK signal output by setting the Brake Enable Waiting Time (Pn508).

The /BK signal goes to H level (brake ON) when either of the following conditions is satisfied:

- When the Motor speed falls below the level set in Pn507 after the power to the Motor is turned OFF.
- When the time set in Pn508 is exceeded after the power to the Motor is turned OFF.

Parameter	Name	Range	Unit	Default	When Enabled
Pn507	Brake Enable Speed Threshold	10 to 100	1rpm	100	Immediately
Pn508	Brake Enable Waiting Time	10 to 100	10ms	50	Immediately

5.7 Encoder Setting

5.7.1 Absolute Encoder Selection

Absolute encoders are fitted on motors with an encoder type of L; e.g. EM3A-02ALA211. These encoders require a battery supply to retain the absolute encoder data when the Drive power is removed.

With a system that uses an absolute encoder, the host controller can monitor the current position. Therefore, it is not necessary to perform an origin return operation when the power supply to the system is turned ON.

There are two types of encoders for the Motors. The usage of the encoder is specified in Pn002.2.

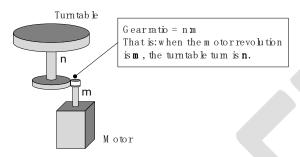
Parameter	Setting	Meaning	When Enabled
	0 [Default]	Use the encoder as an absolute encoder.	
Pn002.2	1	Use the encoder as an incremental encoder.	After restart

IMPORTANT

The default setting of the Drive uses an absolute encoder. If the Motor encoder is an incremental encoder, an A47 alarm or an A48 alarm will occur when the Drive is first powered up.

In this case, set Pn002.2=1 and restart the Drive.

5.7.2 Encoder Alarm Resetting

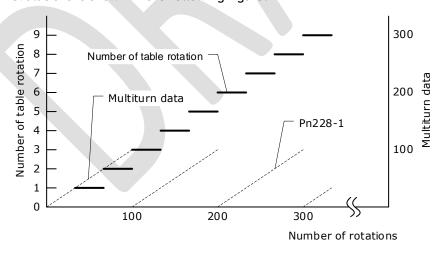

If alarm A.47 or A.48 occurs, replace the battery as soon as possible. After replacing the battery, perform the operation **Absolute encoder alarm reset** and **Fn010** (**Absolute encoder multi-turn reset**.

For details about replacing the battery, see the section 3.5.3 Battery Case Connection.

5.7.3 Multiturn Limit Setting

The multiturn limit is used in position control for a turntable or other rotating body.

For example, consider a machine that moves the turntable shown in the following diagram in only one direction.



Because the turntable moves in only one direction, the upper limit to the number of revolutions that can be counted by an absolute encoder will eventually be exceeded.

The multiturn limit is used in cases like this to prevent fractions from being produced by the integral ratio of the number motor revolutions and the number of turntable revolutions.

For a machine with a gear ratio of n:m, as shown above, you can set Pn228 (OB 30A9h in EtherCAT) as \mathbf{m} , and the value of $\mathbf{m} - \mathbf{1}$ will be the setting for the multiturn limit setting.

The relationship between the number of turntable revolutions and the number of motor revolutions is shown in the following figure.

Parameter	Name	Range	Unit	Default	When Enabled
Pn228	Multiturn limit	0 to 65535	1 rev	10	After restart

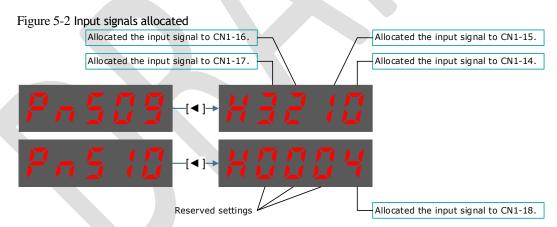
Note: This parameter is enabled when you use an absolute encoder.

The data will change as shown below when this parameter is set to anything other than the default setting.

- If the motor operates in the reverse direction when the multiturn data is 0, the multiturn data will change to the value set in (Pn228-1).
- If the motor operates in the forward direction when the multiturn data is at the value set in (Pn228-1), the multiturn data will change to 0.

The multiturn data will always be 0 in the following cases. It is not necessary to reset the absolute encoder in these cases.

- When you use a single-turn absolute encoder
- When you set Pn002.2 = 1 (Use the encoder as an incremental encoder)


5.8 I/O Signal Allocations

Functions are allocated to the pins on the I/O signal connector (CN1) in advance. You can change the allocations and the polarity for some of the connector pins. Function allocations and polarity settings are made with parameters.

5.8.1 Input Signal Allocations

Allocation Description

The I/O signal connector (CN1) on the Drive provides five pins (points) for allocating the input signals, corresponding to the sub-parameters of Pn509 and Pn510, as is shown in Figure 5-2.

IMPORTANT

- If you allocate two or more signals to the same input circuit, a logical OR of the inputs will be used and all of the allocated signals will operate accordingly. This may result in unexpected operation.
- Since the pins have priority, only the highest priority pin is in effect if a signal is repeatedly allocated to multiple pin. The priority of the pins is arranged from high to low as follows:

 $CN1-18 \rightarrow CN1-17 \rightarrow CN1-16 \rightarrow CN1-15 \rightarrow CN1-14$

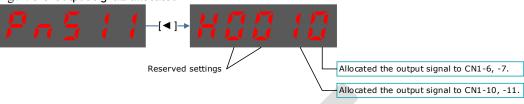
Default Input Signals

Table 5-1 lists the input signals that can be allocated and their corresponding values. Set the sub-parameters of Pn509 and Pn510 to use the following values, which means that they are allocated to the corresponding pins.

Table 5-1 Default Input signals

Signal	Name	Value
S-ON	Servo ON Input Signal	0
P-OT	Forward Drive Prohibit Input Signal	1
N-OT	Reverse Drive Prohibit Input Signal	2
P-CL	Forward External Torque Limit Input Signal	3
N-CL	Reverse External Torque Limit Input Signal	4
G-SEL	Gain Selection Input Signal	5
HmRef	Homing Input Signal	6
Remote	Remoted IO Input Signal	7
EXT1	Probe TouchProbe enter 1	8
EXT2	Probe TouchProbe enter 2	9
E-STOP	Force stop input	Α

Table 5-2 Specification of 400V Input Signals


Input Signal	Name	Assigned Value
S-ON	Servo ON	0
P-CON	Forward Drive Prohibited	1
P-OT	Reverse Drive Prohibited	2
N-OT	Forward Torque External Limiting Input	3
N-CL	Reverse Torque External Limiting Input	4
G-SEL	Gain Switching Input	5
HmRef	Homing Signal	6
Remote	Remote IO Input	7
EXT1	Probe TouchProbe Input 1	8
EXT2	Probe TouchProbe Input 2	9
E-STOP	Forced Stop Input	Α

5.8.2 Output Signal Allocations

Allocation Description

The I/O signal connector (CN1) on the Drive provides three group of pins (points) for allocating the output signals, corresponding to the parameter Pn511, as is shown in Figure 5-3.

Figure 5-3 Output signals allocated

If you allocate more than one signal to the same output circuit, a logical OR of the signals will be output.

Default Output Signals

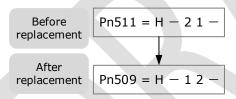

Table 5-2 lists the output signals that can be allocated and their corresponding values. Set the parameter Pn511 to use the following values, which means that they are allocated to the corresponding pins.

Table 5-2 Table 5-3 Default Output signals

Signal	Name	Value
COIN/VCMP	Positioning Completion Output Signal or Speed Coincidence Detection Output Signal	0
TGON	Rotation Detection Output Signal	1
S-RDY	Servo Ready Output Signal	2
CLT	Torque Limit Detection Output Signal	3
ВК	Brake Output Signal	4
PGC	Motor C-pulse Output Signal	5
ОТ	Overtravel Output Signal	6
RD	Motor Excitation Output Signal	7
TCR	Torque Detection Output Signal	8
Remote0	Remoted IO Output Signal 0	Α
Remote1	Remoted IO Output Signal 1	В
Reserved	-	С
PSO	Position Comparison	D

Assignment example

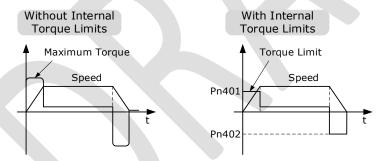
An example of replacing a Servo Ready Output (S-RDY) signal assigned to CN1-12, 13 with a Speed Detection Output (TGON) signal assigned to CN1-10, 11 is shown below.

5.9 Torque Limit

You can limit the torque that is output by the Motor.

There are four different ways to limit the torque. These are described in the following table.

Limit Method	Outline	Reference
Internal Torque Limits	The torque is always limited with the setting of a parameter.	5.9.1
External Torque Limits	The torque is limited with an input signal from the host station.	5.9.2
Limiting torque with EtherCAT command	The torque is limited with the settings of objects 60E0h (PosTorLimit) and 60E1h (NegTorLimit) in EtherCAT command.	7.8
Limiting torque with /CLT output signal	The torque is limited by the output signal /CLT (Allocated by Pn511).	_


If you set a value that exceeds the maximum torque of the Motor, the torque will be limited to the maximum torque of the Motor.

5.9.1 Internal Torque Limits

If you use internal torque limits, the maximum output torque will always be limited to the specified forward torque limit (Pn401) and reverse torque limit (Pn402).

Parameter	Name	Range	Unit	Default	When Enabled
Pn401	Forward Internal Torque Limit	0 to 350	%	300	Immediately
Pn402	Reverse Internal Torque Limit	0 to 350	%	300	Immediately

If the setting of Pn401 or Pn402 is too low, the torque may be insufficient for acceleration or deceleration of the Motor.

5.9.2 External Torque Limits

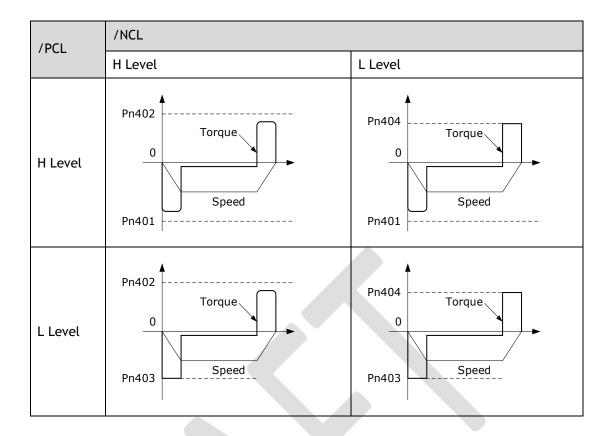
You can limit the torque only when required by the operating conditions of the machine by turning a signal ON and OFF.

You can use this for applications such as stopping on physical contact, or holding a workpiece with a robot.

External Torque Limit Reference Signals

The /P-CL (Forward External Torque Limit) and /N-CL (Reverse External Torque Limit) signals are used as the external torque limit reference signals. The /P-CL signal is used for the forward torque limit and the /N-CL signal is used for the reverse torque limit.

Туре	Signal	Pin	Signal Status	Meaning
	/P-CL	Allocated by Pn509 or Pn510	ON (slasad)	Applies the forward external torque limit.
Input			ON (closed)	The torque is limited to the smaller of the settings of Pn401 and Pn403.
Input			OFF (open)	Cancels the forward external torque limit.
				The torque is limited to the setting of Pn403.
			ON (closed)	Applies the reverse external torque limit.
				The torque is limited to the smaller of the settings of Pn402 and Pn404.
			OFF (open)	Cancels the reverse external torque limit.
				The torque is limited to the setting of Pn404.


Setting the Torque Limits

If the setting of Pn401 (Forward Torque Limit), Pn402 (Reverse Torque Limit), Pn403 (Forward External Torque Limit), or Pn404 (Reverse External Torque Limit) is too low, the torque may be insufficient for acceleration or deceleration of the Motor.

Parameter	Name	Range	Unit	Default	When Enabled
Pn401	71 Forward Internal Torque Limit		%	300	Immediately
Pn402 Reverse Internal Torque Limit		0 to 350	%	300	Immediately
Pn403 Forward External Torque Limit		0 to 350	%	100	Immediately
Pn404 Reverse External Torque Limit		0 to 350	%	100	Immediately

Changes in the Output Torque for External Torque Limits

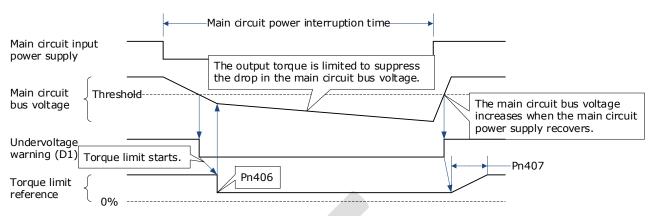
The following table shows the changes in the output torque when the internal torque limit is set to 300%. In this example, the Motor direction is set to Pn001.0=0 (Use CCW as the forward direction).

Limiting torque with /CLT output signal

This following describes the /CLT signal, which indicates the status of limiting the Motor output torque.

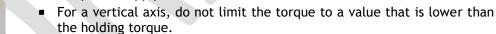
Туре	Signal	Pin	Signal Status	Meaning
Output	Allo	Allocated by	ON (closed)	The Motor output torque is being limited.
Output	/CLT	Pn511	OFF (open)	The Motor output torque is not being limited.

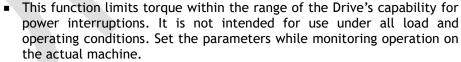
5.10 SEMI F47 Function


The SEMI F47 function detects an A.D1warning (Undervoltage Warning) and limits the output current if the DC main circuit power supply voltage to the Drive drops to a specified value or lower because the power was momentarily interrupted or the main circuit power supply voltage was temporarily reduced.

This function complies with the SEMI F47 standards for semiconductor manufacturing equipment.

You can combine this function with the Momentary Power Interruption Hold Time (Pn538) to allow the Motor to continue operating without stopping for an alarm or without recovery work even if the power supply voltage drops.


You can set Pn007.2=1 for slow down the ramp rate of the bus voltage when an undervoltage occurs, allowing the system to run longer. In addition, you can set the Torque Limit at Main Circuit Voltage Drop (Pn407), which is a relative percentage of Pn401 (Forward Internal Torque Limit) or Pn402 (Reverse Internal Torque Limit).


The Drive controls the torque limit for the set time (Pn407) after the Undervoltage warning is cleared.

Parameter	Name	Range	Unit	Default	When Enabled
Pn538	Momentary Power Interruption Hold Time	0 to 50	1 cycle	1	Immediately
Pn407	Torque Limit at Main Circuit Voltage Drop	0 to 100	%	50	Immediately
Pn408	Release Time for Torque Limit at Main Circuit Voltage Drop	0 to 1000	ms	100	Immediately

- This function handles momentary power interruptions for the voltage and time ranges stipulated in SEMI F47. An uninterruptible power supply (UPS) is required as a backup for momentary power interruptions that exceed these voltage and time ranges.
- Set the host controller or Drive torque limit so that a torque reference that exceeds the specified acceleration torque will not be output when the power supply for the main circuit is restored.

You can set the momentary power interruption hold time to increase the amount of time from when the power supply is turned OFF until power supply to the Motor is stopped. To stop the power supply to the Motor immediately, use the Servo OFF command.

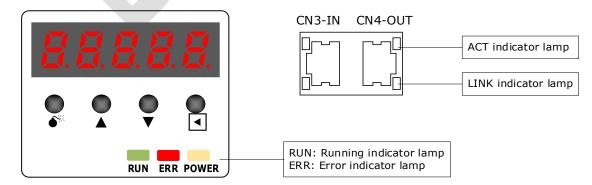
IMPORTANT

Chapter 6 EtherCAT Communications

6.1 Introduction

EtherCAT is a real-time Industrial Ethernet technology originally developed by Beckhoff Automation. The EtherCAT protocol which is disclosed in the IEC standard IEC61158 is suitable for hard and soft real-time requirements in automation technology, in test and measurement and many other applications.

The EtherCAT master sends a telegram that passes through each node. Each EtherCAT slave device reads the data addressed to it "on the fly" and inserts its data in the frame as the frame is moving downstream. The frame is delayed only by hardware propagation delay times. The last node in a segment (or drop line) detects an open port and sends the message back to the master using Ethernet technology's full duplex feature.

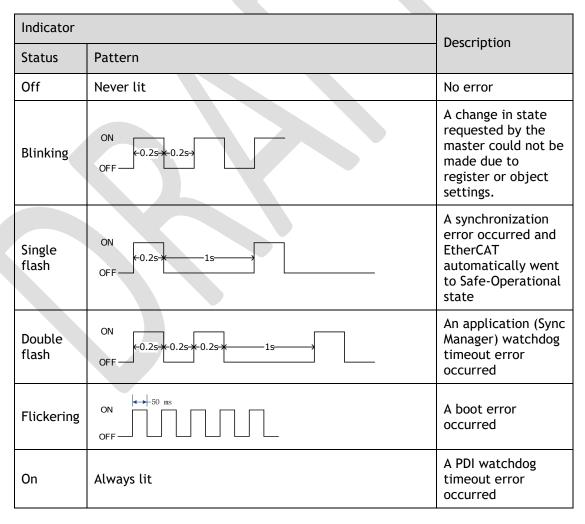

6.2 Specification

Item	Specifications
Applicable Communications Standards	IEC 61158 Type12, IEC 61800-7 CiA402 Drive Profile
Protocol	100BASE-TX (IEEE802.3)
Communications Connectors	 CN3-IN (RJ45): EtherCAT signal input connector CN4-OUT (RJ45): EtherCAT signal output connector
Cable	Category 5 (CAT5e SF/UTP)
Sync Manager	SMO: Mailbox output, SM1: Mailbox input, SM2: Process data output, and SM3: Process data input
FMMU	FMMU 0: Mapped in process data output (RxPDO) area FMMU 1: Mapped in process data input (TxPDO) area FMMU 2: Mapped to mailbox status
EtherCAT Commands (Data Link Layer)	APRD, FPRD, BRD, LRD, APWR, FPWR, BWR, LWR, ARMW, FRMW
Process Data	Assignments can be changed with PDO mapping.
MailBox (CoE)	Emergency messages, SDO requests, SDO responses (TxPDO/RxPDO and remote TxPDO/RxPDO are not supported.)
MailBox (FoE)	Firmware update by FoE
Distributed Clocks	Free-Run Mode and DC Mode (Can be switched), SM2 (SM2 event sync) Applicable DC cycles: 125 µs to 8 ms in 125-µs increments
Slave Information Interface	2048 bytes (read-only)

6.3 Communication Indication

There are 3 indicator lamps on the panel Operator of the Drive to indicate the communication status of EtherCAT: RUN and ERR.

In addition, CN3-IN and CN4-OUT connectors have LINK and ACT indicators.


RUN Indicator

The RUN indicator shows the status of EtherCAT communications.

Indicator	Description		
Status	Pattern	Description	
Off	Never lit	EtherCAT is in Init state	
Blinking	ON (-0.2s+0.2s+)	EtherCAT is in Pre- Operational state	
Single flash	ON1s1s	EtherCAT is in Safe- Operational state	
On	Always lit	EtherCAT is in Operational state	

ERR Indicator

The ERR indicator shows the error status of EtherCAT communications.

LINK/ACT Indicator

The LINK/ACT indicators show whether Communications Cables are connected to the CN3-IN and CN4-OUT connectors and whether communications are active.

Indicator		Description	
Status	Pattern	Description	
Off	Never lit	A Communications Cable is not connected and the EtherCAT controller is not running	
Flickering	ON 50 ms OFF	Data communications are in progress	
On	Always lit	A Communications Cable is connected, but data communications are not being performed	

6.4 EtherCAT Slave Information

The drive publishes network accessible properties via an EtherCAT Slave Information (ESI) file. This is an XML based file which is used by the network master.

The ESI file for the DX3 Drive can be found on the official website of Trio and has the name: DX3_V1.****.xml

NOTE: The asterisks (***) indicate the version number.

6.5 EtherCAT State Machine

A state machine is used to manage the communications states between the master and slave applications, shown in following figure. Normally, the state of the slave responds based on requests from the master.

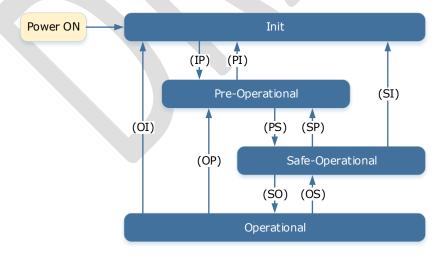


Table 6-1 lists the state transition and initialization process.

Table 6-1 Description of state or transition

Table 6 1 Description of state of transition				
State or Transition	Operation			
Init (I)	Mailbox communications are not available.Process data communications are not available.			

State or Transition	Operation
Init to Pre-Operational (IP)	 The master sets the DL address and Sync Manager Channels for mailbox communications. The master initializes DC clock synchronization. The master requests the Pre-Operational state. The master sets the AL control register. The slaves check whether the mailbox was initialized correctly.
Pre-Operational (P)	Mailbox communications are available.Process data communications are not available.
Pre-Operational to Safe- Operational (PS)	 The master sets the Sync Manager Channels and FMMU channels for process data. The master uses SDOs to set the PDO mappings and the Sync Manager PDO Assignment parameters. The master requests the Safe-Operational state. The slaves check whether the Sync Manager channels for process data communications and, if required, the distributed clock settings are correct.
Safe-Operational (S)	Process data communications are possible. However, only the input data is available. The output data is still unavailable.
Safe-Operational to Operational (SO)	The master sends available output data.The master requests the Operational state.
Operational (O)	Process data communications are available.

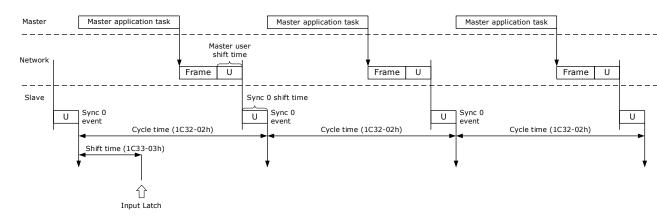
6.6 Communications between Master and Slave

PDO

PDO is used to transfer cyclic data. This is data that is transferred between the master and slave every network cycle. Typically, this is data required for operation of the drive; Control Word, Status Word, Set Point, etc...

SDO

SDO is used to transfer non-cyclic data, such as communication parameter configuration, and Servo running parameter configuration. The CoE service type includes Emergency Message, SDO request and SDO response.


Emergency Message

When an alarm occurs in the Drive, the CoE service can trigger an emergency message to inform the user of the error code. The Motion Coordinator response to the emergency message can be set by the ECAT_MODE system parameter in the controller.

Distributed Clock

The synchronization of EtherCAT communications is based on a mechanism called a distributed clock. With the distributed clock, all devices are synchronized with each other by sharing the same reference clock. The slave devices synchronize the internal applications to the Sync0 events that are generated according to the reference clock.

The figure below shows a timing chart for DC synchronization.

NOTE: Only the object 1C33-03h can be set.

6.7 Relevant Settings

For correct operation using EtherCAT ensure the parameters below are set correctly.

Parameter	Name	Setting	Meaning
Pn006.0	Bus Selection	1	Use EtherCAT. [Default]

The Device Node Number can be used to force the axis number used by the controller.

Parameter	Name	Range	Unit	Default	When Enabled
Pn704	Device Node Number	0 to 127		0	After restart

Chapter 7 CiA402 Drive Profile

7.1 Gear Ratio

Reference units include position reference unit, velocity reference unit, and acceleration reference unit, which set the proportional relationship (gear ratio) between the reference unit (Pos unit, Vel unit, or Acc unit) and the encoder unit (inc) through the corresponding objects.

Name	Unit	Description
	Pos unit	Set by object 6093h. $1 [Pos \ unit] = \frac{6093h - 01h}{6093h - 02h} [inc]$
Reference units	Vel unit	Set by object 6094h. $1 \ [\textit{Vel unit}] = \frac{6094h - 01h}{6094h - 02h} \ [\textit{inc}]$
	Acc unit	Set by object 6097h. $1 \ [Acc \ unit] = \frac{6097h - 01h}{6097h - 02h} \ [inc]$
Encoder unit	linc	

The calculation of gear ratio must be reduced to without common divisor.

For Motor encoders with different bit, the setting ranges of the gear ratio are as following:

- Bit of Motor encoder < 20, the setting range is 0.001 to 4000
- Bit of Motor encoder = 21, the setting range is 0.001 to 8000
- Bit of Motor encoder = 22, the setting range is 0.001 to 16000
- Bit of Motor encoder = 23, the setting range is 0.001 to 32000
- Bit of Motor encoder = 24, the setting range is 0.001 to 64000

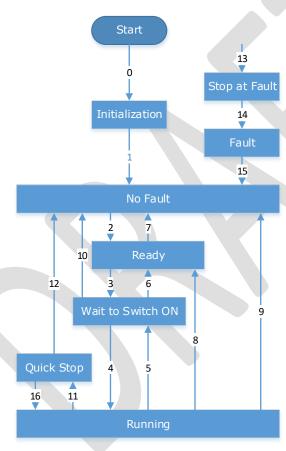
If the setting exceeds the above range, A07 (Electronic Gear Error) alarm will occur.

The Motor position feedback (encoder unit) and driving shaft position feedback (reference unit) is in the following relationship:

Motor position feedback = Driving shaft position feedback \times Gear ratio

Taking the load ball screw as an example: Minimum reference unit fc = 1 mm, Lead pB = 10 mm/r, Reduction ratio n = 5:1, 20-bit incremental encoder resolution P = 1048576;

The gear ratio is calculated as follows:


Gear radio =
$$\frac{\text{Motor resolution P} \times \text{n}}{pB} = \frac{1048576 \times 5}{10} = 524288$$

Therefore, 6093-01h = 524288, 6093-01h = 1, which means that when the driving shaft displacement is 1, the Motor displacement is 524288.

7.2 Device Control

7.2.1 CiA402 State Machine

The Drive runs in the specified status only when it is instructed according to the flowchart defined in CiA402.

The states are described in the following table.

State	Description
Initialization	Initialization of the Drive and self-check has been done. Parameter settings or Drive functions cannot be implemented.
No Fault	No fault exists in the Drive or the fault has been eliminated. Parameter settings of the Drive is allowed.
Ready	The Drive is ready. Parameter settings of the Drive is allowed.

State	Description	
Wait to Switch ON	The Drive waits to switch on. Parameter settings of the Drive is allowed.	
Running	The Drive is in normal running state; a certain drive mode is enabled; the Motor is energized, and rotates when the reference is not 0. Parameter settings of the Drive is allowed.	
Quick Stop	The quick stop function is enabled, and the Drive executes quick stop. Parameter settings of the Drive is allowed.	
Stop at Fault	A fault occurs, and the Drive stops. Parameter settings of the Drive is allowed.	
Fault	The stop process is completed, and all the drive functions are inhibited. Parameter setting is allowed for users to eliminate faults.	

The control commands and state switchover are described as follows:

CiA	402 State Switchover	Controlword (6040h)	Statusword (6041h)
0	Start → Initialization	Natural transition, and no control command is required.	0x0000
1	Initialization → No Fault	Natural transition, and no control command is required. If an error occurs during initialization, the Drive directly goes to state 13.	0x0250
2	No Fault → Ready	0x0006	0x0231
3	Ready \rightarrow Wait to switch on	0x0007	0x0233
4	Wait to switch on \rightarrow Running	0x000F	0x0237
5	Running → Wait to switch on	0x0007	0x0233
6	Wait to switch on → Ready	0x0006	0x0231
7	Ready → No Fault	0x0000	0x0250
8	$Running \rightarrow Ready$	0x0006	0x0231
9	Ready → No Fault	0x0000	0x0250
10	Wait to switch on \rightarrow No Fault	0x0000	0x0250
11	Running → Quick stop	0x0002	0x0217
12	Quick stop → No Fault	Set 605Ah to a value among 0 to 2. Natural transition is performed after stop, and no control command is required.	0x0250

CiA	402 State Switchover	Controlword (6040h)	Statusword (6041h)
13	Stop at fault	Once a fault occurs in any state other than <i>Fault</i> , the Drive automatically switchovers to the stop at fault state, without control command.	0x021F
14	Stop at fault → Fault	Natural transition after stop at fault, and no control command is required.	0x0218
15	Fault → No Fault	0x80	0x0250
16	Quick stop → Running	Set 605Ah to a value between 5 and 6. After the stop process is completed, 0x0F is sent after the stop process is completed.	0x0237

7.2.2 Stop Modes

The Drive supports 5 stop modes described as below sections.

Quick Stop Option Code (605Ah)

This object determines what operation will be performed if a Quick Stop is executed.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
605Ah	0	Quick Stop Option Code	INT16	RW	No	0, 1, 2, 5, 6 Default:2

The meanings of Value are as follows:

Value	Description
0	Disables the Servo (Servo OFF, and stops the axis according to the setting of Pn003.0)
1	Decelerates according to <i>Profile Deceleration</i> (6084h) for decelerating to a stop and moves to the No Fault state
2	Decelerates according to <i>Quick Stop Deceleration</i> (6085h) for decelerating to a stop and moves to the No Fault state
5	Decelerates according to <i>Profile Deceleration</i> (6084h) for decelerating to a stop and stays at the QuickStop state
6	Decelerates according to <i>Quick Stop Deceleration</i> (6085h) for decelerating to a stop and stays at the QuickStop state

605Bh (Shutdown Option Code)

This object defines the operation that is performed if there is a move from Operation Enable state to Ready state.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
605Bh	0	Shutdown Option Code	INT16	RW	No	0, 1 Default: 0

The meanings of Value are as follows:

Value	Description
0	Disables the Servo (Servo OFF, and stops the axis according to the setting of Pn003.0)
1	Decelerates according to <i>Profile Deceleration</i> (6084h) for decelerating to a stop and moves to the No Fault state

605Ch: Disable Operation Option Code

This object defines the operation that is performed if there is a move from Operation Enable state to Switched ON state.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
605Ch	0	Shutdown Option Code	INT16	RW	No	0, 1 Default: 0

The meanings of Value are as follows:

Value	Description
0	Disables the Servo (Servo OFF, and stops the axis according to the setting of Pn004.0)
1	Decelerates according to <i>Profile Deceleration</i> (6084h) for decelerating to a stop and moves to the No Fault state

605Dh: Halt Option Code

This object defines the operation that is performed if bit 8 (Halt) in *Controlword* is active.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
605Dh	0	Halt Option Code	INT16	RW	No	1, 2 Default: 1

The meanings of Value are as follows:

Value	Description
1	Decelerates according to Profile Deceleration (6084h) for decelerating to a stop
2	Decelerates according to <i>Quick Stop Deceleration</i> (6085h) for decelerating to a stop

605Eh: Fault Reaction Option Code

This object defines the operation that is performed when an alarm is detected in the Servo System.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
605Eh	0	Halt Option Code	INT16	RW	No	0

The meaning of Value is as follows:

Value	Description
0	Disables the Servo (Servo OFF, and stops the axis according to the setting of Pn003.0)

7.3 Control Modes

The Drive supports 8 control modes as defined in 6502h.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6502h	0	Supported Drive Modes	UINT32	RO	No	0x03ED

Bit	Supported mode	Definition		
0	Profile Position	1: Supported		
1	Vl (Velocity mode)	0: Not supported		
2	PV (Profile Velocity mode)	1: Supported		
3	TQ (Torque Profile mode)	1: Supported		
4	Reserved	0		
5	HM (Homing mode)	1: Supported		
6	IP (Interpolated Position mode)	1: Supported		
7	CSP (Cyclic Sync Position mode)	1: Supported		
8	CSV (Cyclic Sync Velocity mode)	1: Supported		
9	CST (Cyclic Sync Torque mode)	1: Supported		

Bit	Supported mode	Definition
10 to 31	Reserved	0

7.3.1 Modes of Operation

This object is used to select the operation mode. The Servo System gives the actual operation mode in the *Modes of Operation Display* object.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6060h	0	Modes of Operation	UINT8	RW	Yes	0 to 10 Default: 0

Value	Description						
0	There is no mode change or no mode assigned						
1	Profile Position Mode						
2	-						
3	Profile Velocity Mode						
4	Profile Torque Mode						
5	-						
6	Homing Mode						
7	Interpolated Position Mode						
8	Cyclic Sync Position Mode						
9	Cyclic Sync Velocity Mode						
10	Cyclic Sync Torque Mode						

7.3.2 Modes of Operation Display

This object gives the current mode of operation.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6061h	0	Modes of Operation Display	UINT8	RO	Yes	Default: 0

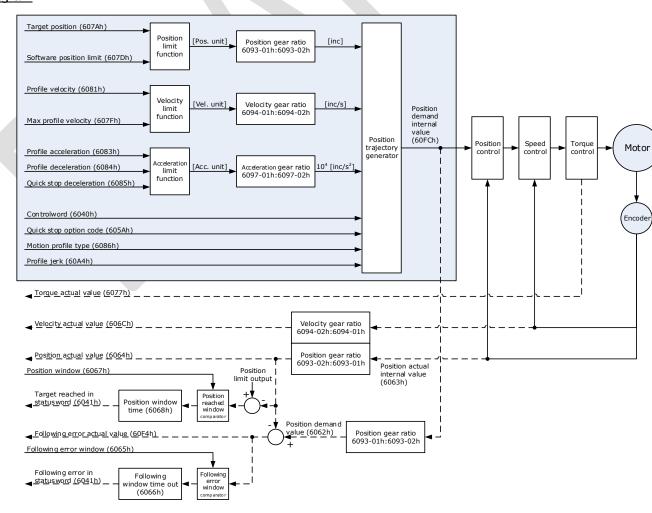
7.3.3 Mode Change

Note the following when changing the control mode.

• After changing from Position Control Mode (PP mode or CSP mode) to other modes, the unexecuted position command will be discarded.

- A ramp stop command is executed when changing from Speed Control Mode (PV mode or CSV mode) or Torque Control Mode (PT mode or CST mode) to other modes. And then, changes to other modes after the stop has been completed.
- It cannot be changed to other modes when the Servo is operating in the Homing Mode, except that the homing operation has been completed or interrupted (Fault or disabled).
- Servo running status, after changing from other modes to CSP mode, CSV mode or CST mode, please send the command at least 1ms interval to avoid loss of instruction or error.
- After changing the modes to Cyclic Sync Mode (CSP mode, CSV mode or CST mode), please
 wait 1 ms or more before sending the commands, in case losing command loss or error
 occurred.

7.3.4 Communication Cycle


The communication Cycle Time of all Control Modes (PP, PV, PT, HM, IP, CSP, CSV, and CST) supports an integer multiple of 125µs (e.g. 125µs, 250µs, 500µs, 1ms, and so on).

7.4 Position Control

7.4.1 Profile Position (PP) Mode

In this mode of operation, the host control uses the trajectory generator (an operation profile calculation function) inside the Drive to perform PTP positioning operation. It executes trajectory generator, position control, speed control, and torque control based on the target position, profile velocity, profile acceleration, profile deceleration, and other information.

Block Diagram

Speed Limit

The speed limit is determined by the smaller of 6080h value and 607F value.

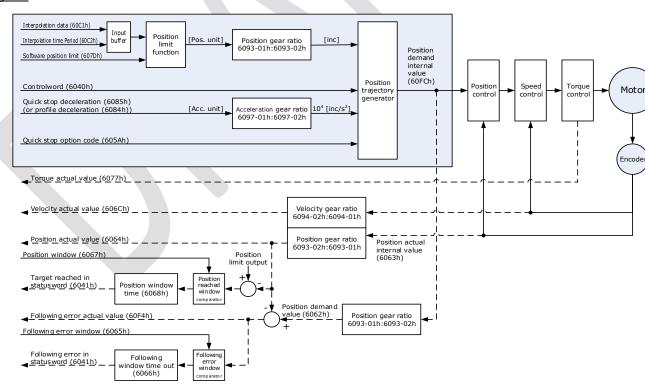
Relevant Objects

Object	Bit	Name	Value	Description			
		Control	0	Disabled			
	0	Switch on	1	Enabled			
		E. d. L. and L. and	0	Disabled			
	1	Enable voltage	1	Enabled	If Bit0 to Bit3 are all 1, the		
	2	0.11.1	0	Disabled	Drive starts running.		
	2	Quick stop	1	Enabled			
	_	Enable	0	Disabled			
	3	operation	1	Enabled			
Controlword 6040h	4	New set-point	0 -> 1	to 1 of the	e signals. In this timing, the 607Ah, 6081h, 6083h, and 6084h ned.		
	5	Change set immediately	0		Starts the next positioning after the current positioning completes (target reached)		
			1	Starts the next positioning immediately			
	6	abs/rel	0	Treats the target position as an absolute value.			
		abs/ret	1	Treats the target position as a relative value.			
	10		0	position	t 8 in Controlword) = 0: Target not reached t 8 in Controlword) = 1: Axis ates		
	10	Target reached	1	position	t 8 in Controlword) = 0: Target reached t 8 in Controlword) = 1: Velocity s 0		
Statusword 6041h	12	Set-point	0		set-point already processed, or new set-point		
	12	acknowledge	1		set-point still in process, set- rwriting shall be accepted		
	12	Following organ	0	No follow	ing error		
	13	Following error	1	Following	error		
	15	Homoflag	0	Homing no	ot completed		
	13	Homeflag	1	Homing completed			

NOTE: Bit10 of Statusword is set to 1 after the Quick Stop has been completed, and the Servo is in the Stop state.

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
603F	00	Error Code	RO	UINT16	-	0 to 65535	0
6040	00	Controlword	RW	UINT16	_	0 to 65535	0
6041	00	Statusword	RO	UINT16	_	0 to 0xFFFF	0
6060	00	Modes of operation	RW	INT8	-	0 to 10	0
6061	00	Modes of Operation display	RO	INT8	-	0 to 10	0
6062	00	Position Demand Value	RO	INT32	Reference unit	-2147483648 to 2147483647	_
6063	00	Position Actual Internal Value	RO	INT32	Encoder unit	-2147483648 to 2147483647	_
6064	00	Position Actual Value	RO	INT32	Reference unit	-2147483648 to 2147483647	_
6065	00	Following Error Window	RW	INT32	Reference unit	-2147483648 to 2147483647	1048576
6067	00	Position Window	RW	UINT32	Encoder unit	0 to 4294967295	734
6068	00	Position Window Time	RW	UINT16	ms	0 to 65535	_
606C	00	Velocity Actual value	RO	INT32	Reference unit	_	_
6077	00	Torque actual value	RO	INT16	0.1%	-5000 to 5000	0
607A	00	Target Position	RW	INT32	Reference unit	-2147483648 to 2147483647	0
6083	00	Profile Acceleration	RW	UDINT32	Reference unit/s²	0 to 4294967295	200000
6084	00	Profile Deceleration	RW	UDINT32	Reference unit/s ²	0 to 4294967295	200000
4002	01	numerator	RW	UINT32	-	0 to 4294967295	1
6093	02	divisor	RW	UINT32	-	0 to 4294967295	1
60E0	00	Positive Torque Limit Value	RW	UINT16	0.1%	0 to 65535	_
60E1	00	Negative Torque Limit Value	RW	UINT16	0.1%	0 to 65535	_

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
60F4	00	Following Error	RO	INT32	Reference unit	-2147483648 to 2147483647	-
60FC	00	Position Demand Internal Value	RO	INT32	Encoder unit	-2147483648 to 2147483647	-
31CD	00	Torque Command Filter Time	RW	INT32	0.01ms	0 to 2500	50
31CA	00	Speed Loop Gain	RW	INT32	rad/s	1 to 10000	500
31CB	00	Speed Loop Integral Time	RW	INT32	0.1ms	1 to 5000	125
31CC	00	Position Loop Gain	RW	INT32	1/s	0 to 1000	40
31D4	00	Speed Feedforward	RW	INT32	%	0 to 100	0
31D5	00	Speed Feedforward Filter Time	RW	INT32	0.1ms	0 to 640	0
31D6	00	Torque Feedforward	RW	INT32	%	0 to 100	0
31D7	00	Torque Feedforward Filter Time	RW	INT32	0.1ms	0 to 640	0
31FC	00	Model Following Control Gain Correction	RW	INT32	%	20 to 500	100
31FE	00	Model Following Control Torque Feedforward	RW	INT32	%	0 to 200	100
3201	00	Limit for Load Oscillation Suppression	RW	INT32	rpm	0 to 1000	100
	00	Internal Torque Feedforward Method	RW	INT32	_	0 to 3	0
3169	02	Torque Feedforward Method	RW	INT32	_	0 to 3	0
	03	Speed Feedforward Method	RW	INT32	_	0 to 3	0


RPDO	TPDO	Remarks
6040h: Controlword	6041h: Statusword	Mandatory
607Ah: Target position	6064h: Position Actual Value	Mandatory
6081h: profile velocity	-	Mandatory
6083h: profile acceleration	-	Optional (cannot be 0)
6084h: profile deceleration	-	Optional (cannot be 0)
6060h: mode of operation	6061h: modes of operation display	Optional

7.4.2 Interpolated Position (IP) Mode

The Interpolated Position Mode is used to control multiple coordinated axes or to control a single axis that requires time interpolation of the set point data.

This mode normally uses a time (communications) synchronization mechanism to synchronize the Servo Drives. The Interpolation Time Period defines the update cycle of the Interpolation Data (i.e., the interpolation position). The interpolation processing in the Drive is based on this setting. The Interpolation Data is interpreted as an absolute value.

Block Diagram

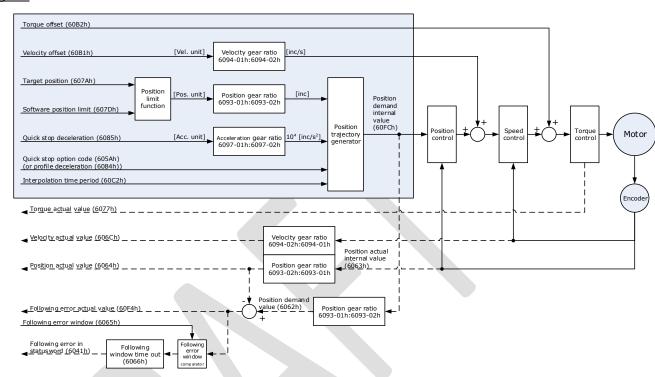
Speed Limit

The speed limit is determined by the smaller of 6080h value and 607F value.

Object	Bit	Name	Value	Description		
	0	Conital an	0	Disabled		
	0	Switch on	1	Enabled		
	1	Enable veltage	0	Disabled		
	1	Enable voltage	1	Enabled	If Bit0 to Bit3 are all 1, the	
	2	Quick stop	0	Disabled	Drive starts running.	
Controlword	2	Quick stop	1	Enabled		
6040h	3	Enable	0	Disabled		
	3	operation	1	Enabled		
	4	Enable	0	Disables ii	nterpolation.	
	4	interpolation	1	Enables in	iterpolation.	
			0	Enables Bit4		
	8	Halt	1	Stops the axis according to <i>Halt Option Code</i> (605Dh)		
	10		0	Halt (Bit 8 in Controlword) = 0: Target position not reached Halt (Bit 8 in Controlword) = 1: Axis decelerates		
	10	Target reached		Halt (Bit 8 in Controlword) = 0: Target		
				position reached. Halt (Bit 8 in Controlword) = 1: Velocity o axis is 0.		
Statusword 6041h	12	ip mode active	0	Interpolat	ion inactive	
	-	ip inode delive	1	Interpolat	ion active	
	13	Following error	0	No follow	ing error	
	1.0	TOROWING CITO	1	Following	error	
	15	Homoflag	0	Homing no	ot completed	
	13	Homeflag	1	Homing co	ompleted	

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
603F	00	Error Code	RO	UINT16	_	0 to 65535	0
6040	00	Controlword	RW	UINT16	_	0 to 65535	0
6041	00	Statusword	RO	UINT16	_	0 to 0xFFFF	0
6060	00	Modes of operation	RW	INT8	-	0 to 10	0

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
6061	00	Modes of Operation display	RO	INT8	_	0 to 10	0
6062	00	Position Demand Value	RO	INT32	Reference unit	-2147483648 to 2147483647	_
6063	00	Position Actual Internal Value	RO	INT32	Encoder unit	-2147483648 to 2147483647	-
6064	00	Position Actual Value	RO	INT32	Reference unit	-2147483648 to 2147483647	_
6065	00	Following Error Window	RW	INT32	Reference unit	-2147483648 to 2147483647	1048576
6067	00	Position Window	RW	UINT32	Encoder unit	0 to 4294967295	734
6068	00	Position Window Time	RW	UINT16	ms	0 to 65535	-
606C	00	Velocity Actual value	RO	INT32	Reference unit/s	-	_
6077	00	Torque Actual value	RO	INT16	0.1%	-5000 to 5000	0
	01	numerator	RW	UINT32	-	0 to 4294967295	1
6093	02	divisor	RW	UINT32	-	0 to 4294967295	1
60B1	00	Velocity Offset	RW	INT32	Reference unit/s	-2147483648 to 2147483647	0
60B2	00	Torque Offset	RW	INT16	0.1%	-32768 to 32767	0
60C2	01	Interpolation time period value	RW	UINT8	-	1~250	-
	02	Interpolation time index	RW	INT8	S	-6~-3	-3
60F4	00	Following Error	RO	INT32	Reference unit	-2147483648 to 2147483647	_
60FC	00	Position Demand Internal Value	RO	INT32	Encoder unit	-2147483648 to 2147483647	_
31CD	00	Torque Command Filter Time	RW	INT32	0.01ms	0 to 2500	50


Index	Subindex	Name	Access	Data Type	Unit	Range	Default
31CA	00	Speed Loop Gain	RW	INT32	rad/s	1 to 10000	500
31CB	00	Speed Loop Integral Time	RW	INT32	0.1ms	1 to 5000	125
31CC	00	Position Loop Gain	RW	INT32	1/s	0 to 1000	40
31D4	00	Speed Feedforward	RW	INT32	%	0 to 100	0
31D5	00	Speed Feedforward Filter Time	RW	INT32	0.1ms	0 to 640	0
31D6	00	Torque Feedforward	RW	INT32	%	0 to 100	0
31D7	00	Torque Feedforward Filter Time	RW	INT32	0.1ms	0 to 640	0
31FC	00	Model Following Control Gain Correction	RW	INT32	%	20 to 500	100
31FE	00	Model Following Control Torque Feedforward	RW	INT32	%	0 to 200	100
3201	00	Limit for Load Oscillation Suppression	RW	INT32	rpm	0 to 1000	100
	00	Internal Torque Feedforward Method	RW	INT32	_	0 to 3	0
3169	02	Torque Feedforward Method	RW	INT32	_	0 to 3	0
	03	Speed Feedforward Method	RW	INT32	_	0 to 3	0

RPDO	TPDO	Remarks
6040h: Controlword	6041h: Statusword	Mandatory
60C1-01h: 1st set-point	6064h: Position Actual Value	Mandatory
6060h: Mode of Operation	6061h: Modes of Operation Display	Optional

7.4.3 Cyclic Synchronous Position (CSP) Mode

In this mode of operation, the host controller generates the position references and gives the target position in 607Ah to the Drive using cyclic synchronization. Position control, speed control, and torque control are performed by the Drive.

Block Diagram

Speed Limit

The speed limit is determined by the smaller of 6080h value and 607F value.

Objects	Dit	Maria	Value	Danamintia	
Object	Bit	Name	Value	Description	on
	0	Switch on	0	Disabled	
		SWILCH OIL	1	Enabled	
Controlword	1	Fachlassikana	0	Disabled	
	1	Enable voltage	1	Enabled	If Bit0 to Bit3 are all 1, the
	2	Ouisk stop	0	Disabled	Drive starts running.
6040h		Quick stop	1	Enabled	
	•	Enable operation	0	Disabled	
	3		1	Enabled	
			0	Executes	or continues operation.
	8 Halt		1	Stops the Code (605	axis according to <i>Halt Option</i> iDh)
Statusword	10	Target reached	0	Reserved	

Object	Bit	Name	Value	Description
6041h	h Drive follows		0	Drive does not follow the target value (position, velocity or torque)
	value	1	Drive follows the target value (position, velocity or torque)	
	13	Following error	0	No following error
			1	Following error
		Homeflag	0	Homing not completed
			1	Homing completed

NOTE: Only absolute position reference is supported in CSP mode.

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
603F	00	Error Code	RO	UINT16	-	0 to 65535	0
6040	00	Controlword	RW	UINT16	-	0 to 65535	0
6041	00	Statusword	RO	UINT16	-	0 to 0xFFFF	0
6060	00	Modes of operation	RW	INT8	-	0 to 10	0
6061	00	Modes of Operation display	RO	INT8	1	0 to 10	0
6062	00	Position Demand Value	RO	INT32	Reference unit	-2147483648 to 2147483647	-
6063	00	Position Actual Internal Value	RO	INT32	Encoder unit	-2147483648 to 2147483647	-
6064	00	Position Actual Value	RO	INT32	Reference unit	-2147483648 to 2147483647	-
6065	00	Following Error Window	RW	INT32	Reference unit	-2147483648 to 2147483647	104857 6
6067	00	Position Window	RW	UINT32	Encoder unit	0 to 4294967295	734
6068	00	Position Window Time	RW	UINT16	ms	0 to 65535	-
606C	00	Velocity Actual value	RO	INT32	Reference unit/s	-	_
6077	00	Torque actual value	RO	INT16	0.1%	-5000 to 5000	0
607A	00	Target Position	RW	INT32	Reference unit	-2147483648 to 2147483647	0

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
6083	00	Profile Acceleration	RW	UDINT32	Reference unit/s ²	0 to 4294967295	200000
6084	00	Profile Deceleration	RW	UDINT32	Reference unit/s ²	0 to 4294967295	200000
(003	01	numerator	RW	UINT32	-	0 to 4294967295	1
6093	02	divisor	RW	UINT32	-	0 to 4294967295	1
60B1	00	Velocity Offset	RW	INT32	Reference unit/s	-2147483648 to 2147483647	0
60B2	00	Torque Offset	RW	INT16	0.1%	-32768 to 32767	0
60F4	00	Following Error	RO	INT32	Reference unit	-2147483648 to 2147483647	_
60FC	00	Position Demand Internal Value	RO	INT32	Encoder unit	-2147483648 to 2147483647	_
31CD	00	Torque Command Filter Time	RW	INT32	0.01ms	0 to 2500	50
31CA	00	Speed Loop Gain	RW	INT32	rad/s	1 to 10000	500
31CB	00	Speed Loop Integral Time	RW	INT32	0.1ms	1 to 5000	125
31CC	00	Position Loop Gain	RW	INT32	1/s	0 to 1000	40
31D4	00	Speed Feedforward	RW	INT32	%	0 to 100	0
31D5	00	Speed Feedforward Filter Time	RW	INT32	0.1ms	0 to 640	0
31D6	00	Torque Feedforward	RW	INT32	%	0 to 100	0
31D7	00	Torque Feedforward Filter Time	RW	INT32	0.1ms	0 to 640	0
31FC	00	Model Following Control Gain Correction	RW	INT32	%	20 to 500	100
31FE	00	Model Following Control Torque Feedforward	RW	INT32	%	0 to 200	100
3201	00	Limit for Load Oscillation Suppression	RW	INT32	rpm	0 to 1000	100

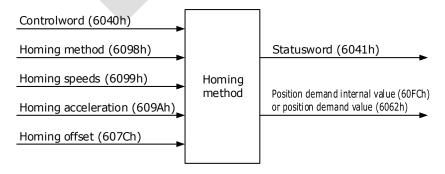
Index	Subindex	Name	Access	Data Type	Unit	Range	Default
	00	Internal Torque Feedforward Method	RW	INT32	_	0 to 3	0
3169	02	Torque Feedforward Method	RW	INT32	_	0 to 3	0
	03	Speed Feedforward Method	RW	INT32	_	0 to 3	0

RPDO	TPDO	Remarks
6040h: Controlword	6041h: Statusword	Mandatory
607Ah: Target Position	6064h: Position Actual Value	Mandatory
6060h: Mode of Operation	6061h: Modes of Operation Display	Optional

7.5 Homing

7.5.1 Homing (HM) Mode

This mode searches for the home and determines the position relationship between home and zero.


- Home: mechanical home reference point, that is, the encoder C-pulse.
- Zero: absolute zero point in the machine.

After homing is completed, the Motor stops at the home. The relationship between home and zero is set in 607Ch.

$$Home = Zero + 607Ch$$
 (Home Offset)

When 607Ch=0, the zero is the same as the home.

Block Diagram

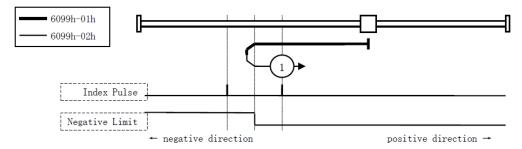
Speed Limit

The speed limit is determined by the smaller of 6080h value and 607F value.

Object	Bit	Name	Value	Description		
	0	Constant an	0	Disabled		
	0	Switch on	1	Enabled		
	4	Fachla welters	0	Disabled		
	1	Enable voltage	1	Enabled	If Bit0 to Bit3 are all 1, the Drive	
	2	Quick stop	0	Disabled	starts running.	
Controlword	2	Quick stop	1	Enabled		
6040h	3	Enable	0	Disabled		
	3	operation	1	Enabled		
	4	Homing	0	Does not s	start homing	
	4	operation start	1	Starts or continues homing		
			0	Enables Bit4		
	8	Halt	1	Stops the axis according to <i>Halt Option Code</i> (605Dh)		
	10	Target reached	0	Target position not reached		
	10	Target reached	1	Target position reached		
			0	Home fail	ed	
	12	Homing attained		Homing su	uccessful	
Statusword 6041h		attamed	1	This flag bit is available when the Drive is in homing mode in running state and the target reached signal is active.		
	13	Haming away	0	No home	error	
	13	Homing error	1	Homing ti	meout or deviation excessive	
			0	Homing no	ot completed	
	15 Homeflag		1	Homing completed This flag bit is set when the home signal is reached.		

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
603F	00	Error Code	RO	UINT16	_	0 to 65535	0
6040	00	Controlword	RW	UINT16	_	0 to 65535	0
6041	00	Statusword	RO	UINT16	_	0 to 0xFFFF	0
6060	00	Modes of operation	RW	INT8	_	0 to 10	0
6061	00	Modes of Operation display	RO	INT8	-	0 to 10	0

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
6062	00	Position Demand Value	RO	INT32	Reference unit	-2147483648 to 2147483647	_
6064	00	Position Actual Value	RO	INT32	Reference unit	-2147483648 to 2147483647	_
6067	00	Position Window	RW	UINT32	Encoder unit	0 to 4294967295	734
6068	00	Position Window Time	RW	UINT16	ms	0 to 65535	_
606C	00	Velocity Actual value	RO	INT32	Reference unit/s	-	-
6077	00	Torque actual value	RO	INT16	0.1%	-5000 to 5000	0
6098	00	Homing Method	RW	INT8	-	1 to 35	1
6099	01	Speed during search for switch	RW	UINT32	Reference unit/s	0 to 4294967295	5000
6099	02	Speed during search for zero	RW	UINT32	Reference unit/s	0 to 4294967295	100
609A	00	Home Acceleration	RW	UINT32	Reference unit/s ²	0 to 4294967295	1000000
60F4	00	Following Error	RO	INT32	Reference unit	-2147483648 to 2147483647	_

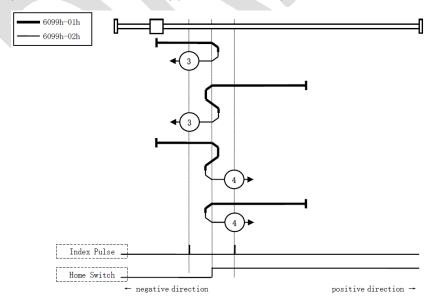

RPDO	TPDO	Remarks
6040h: Controlword	6041h: Statusword	Mandatory
6098h: Homing Method	_	Optional
6099-01h: Speed during search for switch	-	Optional
6099-02h: Speed during search for zero	-	Optional
609A: Home Acceleration	_	Optional
-	6064h: Position Actual Value	Optional
6060h: Modes of operation	6061h: Modes of Operation display	Optional

7.5.2 Homing Methods

6098h=1 (Use C pulse and negative limit switch)

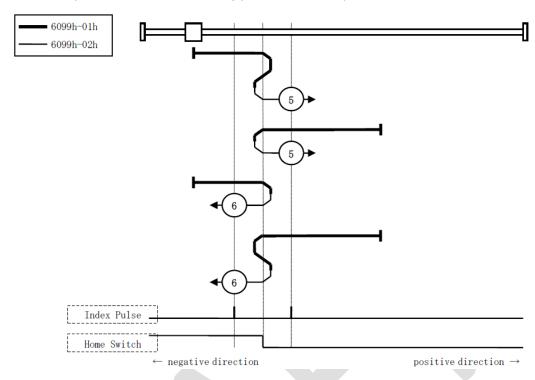
Servo drive needs to move at first toward negative direction fast till reaching the negative limit switch and then decelerate till stop. And then, servo motor will be bounced back slowly

and find the target homing position. Under this homing method, the target homing position is the first C pulse away from the limit switch.

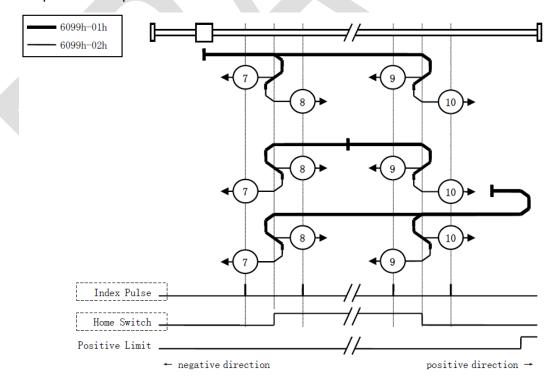

6098h=2 (Use C pulse and positive limit switch)

At first servo motor will move fast toward positive direction and decelerate to stop after reaching the positive limit switch. And then servo motor will be bounced back slowly to find homing position. Under this homing method, the target homing position is the first C pulse away from the limit switch.

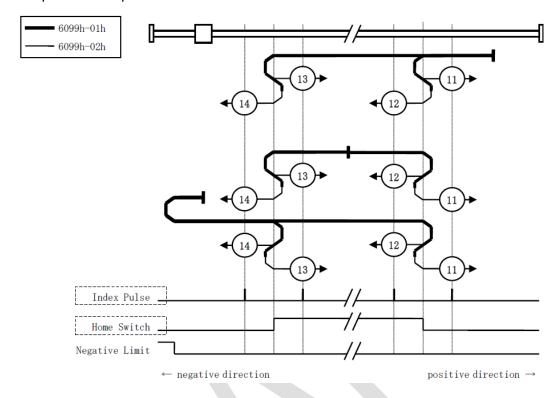
6098h=3 or 4 (Use C pulse and positive reference point limit switch)


It is used that reference point limit switch is on positive direction and negative direction is zero. That is on the end of movement positive direction. Servo drive's initial moving direction is relied on the status of reference point limit switch. The target homing position is on the left side or right side of the reference limit switch. The distance between the reference position switch and homing position is one C pulse.

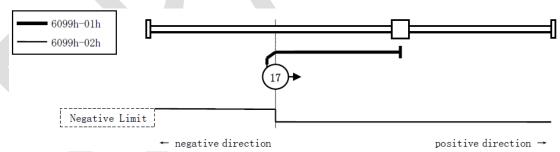
6098h=5 or 6 (Use C pulse and negative reference point limit switch)


It is used that reference point limit switch is on negative direction and positive direction is zero. That is on the edge of movement negative direction. Servo drive's initial moving direction is relied on the status of reference point limit switch. The target homing position is

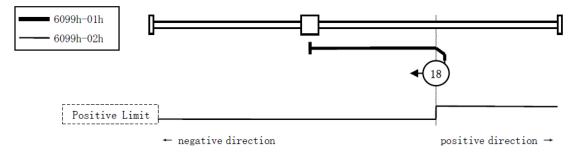
on the left side or right side of the reference limit switch. The distance between the reference position switch and homing position is one C pulse.


6098h=7 to 10 (Use C pulse, reference point limit switch and positive limit switch)

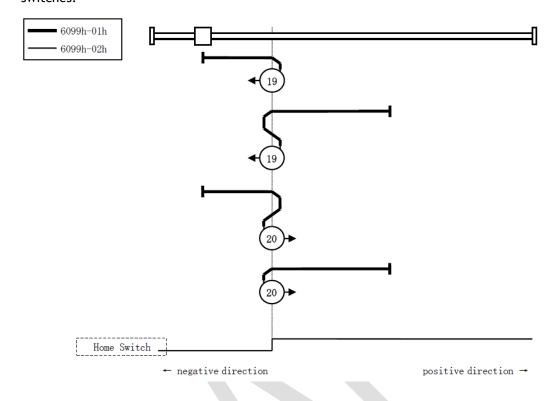
It is used that reference point limit switch is in the middle. And homing is according to C pulse, reference point limit switch and positive limit switch. The final mechanical point is the position of C pulse.


6098h=11 to 14 (Use C pulse, reference point limit switch and negative limit switch)

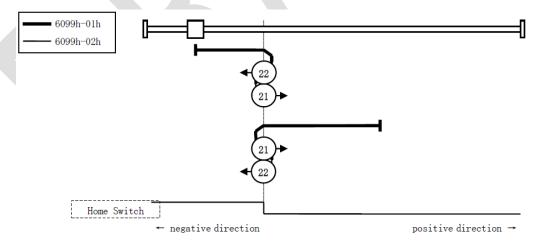
It is used that reference point limit switch is in the middle. And homing is according to C pulse, reference point limit switch and negative limit switch. The final mechanical point is the position of C pulse.


6098h=17 (Use negative limit switch)

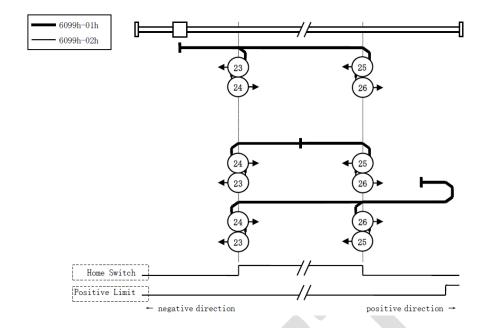
It is similar to <u>6098h=1</u> (<u>Use C pulse and negative limit switch</u>), except that the target zero position no longer uses C-pulses and depends on negative limit switches.


6098h=18 (Use positive limit switch)

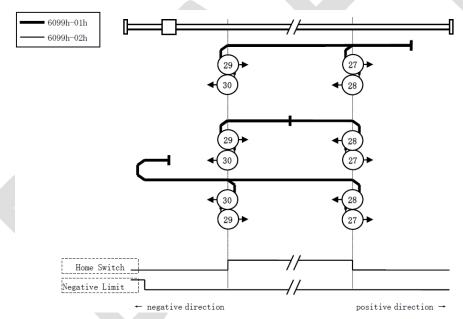
It is similar to 6098h=2 (Use C pulse and positive limit switch), except that the target zero position no longer uses C-pulses and depends on positive limit switches.


6098h=19 or 20 (Use reference point limit switch)

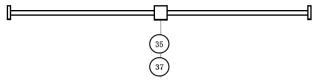
It is similar to <u>6098h=3 or 4 (Use C pulse and positive reference point limit switch)</u>, except that the target zero position no longer uses C-pulses and depends on reference point limit switches.


6098h=21 or 22 (Use reference point limit switch)

It is similar to <u>6098h=5 or 6 (Use C pulse and negative reference point limit switch)</u>, except that the target zero position no longer uses C-pulses and depends on reference point limit switches.


6098h=23 to 26

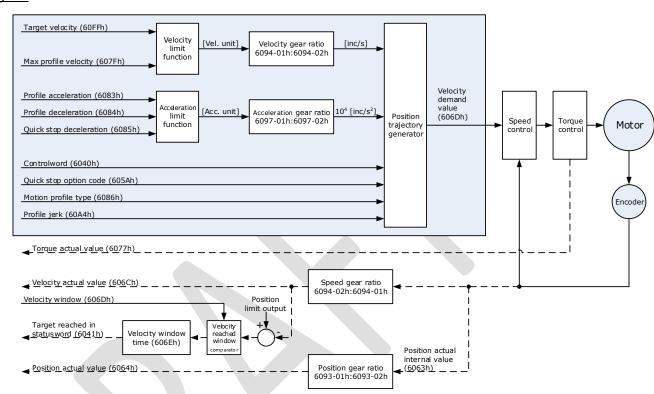
It is similar to <u>6098h=7 to 10 (Use C pulse, reference point limit switch and positive limit switch)</u>, except that the target zero position no longer uses C-pulses and depends on reference point limit switches and positive reference point limit.


6098h=27 to 30

It is similar to 6098h=11 to 14 (Use C pulse, reference point limit switch and negative limit switch), except that the target zero position no longer uses C-pulses and depends on reference point limit switches and positive reference point limit.

6098h=35 or 37 (Homing on the current position)

In this method, the current position shall be taken to be the home position.


Note: Set 6098h as 37, allowing you perform Homing operation when Servo OFF.

7.6 Velocity Control

7.6.1 Profile Velocity (PV) Mode

In this mode of operation, the host controller gives the target speed, acceleration, and deceleration to the Drive. Speed control and torque control are performed by the Drive.

Block Diagram

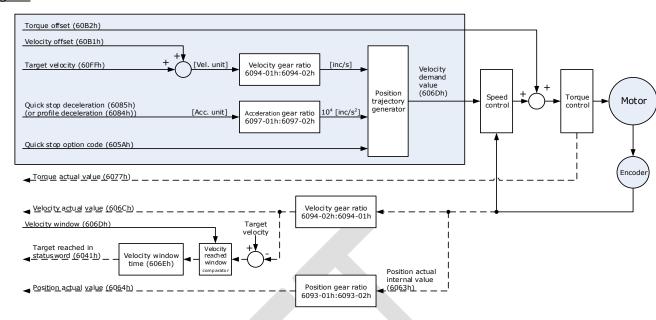
Speed Limit

The speed limit is determined by the smaller of 6080h value and 607F value.

Object	Bit	Name	Value	Description		
	0	Switch on	0	Disabled		
		Switch on	1	Enabled		
	1	Enable voltage	0	Disabled		
	'	Lilable voltage	1	Enabled	If Bit0 to Bit3 are all 1, the Drive	
Controlword 6040h	2	Quick stop Enable operation	0	Disabled	starts running.	
			1	Enabled		
			0	Disabled		
	3		1	Enabled		
	8	Halt	0	Executes	or continues operation.	

Object	Bit	Name	Value	Description
			1	Stops the axis according to <i>Halt Option Code</i> (605Dh)
	10	Target reached	0	 Halt (Bit 8 in Controlword) = 0: Target position not reached Halt (Bit 8 in Controlword) = 1: Axis decelerates
Statusword 6041h	10	Target reached	1	 Halt (Bit 8 in Controlword) = 0: Target position reached Halt (Bit 8 in Controlword) = 1: Velocity of axis is 0
	12	Speed	0	Speed is not equal 0
	12		1	Speed is equal 0
	15	Homeflag	0	Homing not completed
	15		1	Homing completed

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
603F	00	Error Code	RO	UINT16	_	0 to 65535	0
6040	00	Controlword	RW	UINT16	-	0 to 65535	0
6041	00	Statusword	RO	UINT16	-	0 to 0xFFFF	0
6060	00	Modes of operation	RW	INT8	-	0 to 10	0
6061	00	Modes of Operation display	RO	INT8	_	0 to 10	0
607F	00	Max Profile Velocity	RW	UINT32	Reference unit/s	0 to 4294967295	_
6063	00	Position Actual Internal Value	RO	INT32	Encoder unit	-2147483648 to 2147483647	-
6064	00	Position Actual Value	RO	INT32	Reference unit	-2147483648 to 2147483647	_
60FF	00	Target Velocity	RW	INT32	Reference unit/s	-2147483648 to 2147483647	0
606C	00	Velocity Actual value	RO	INT32	Reference unit/s	-	-
6077	00	Torque actual value	RO	INT16	0.1%	-5000 to 5000	0
60E0	00	Positive Torque Limit Value	RW	UINT16	0.1%	0 to 65535	_
60E1	00	Negative Torque Limit Value	RW	UINT16	0.1%	0 to 65535	_
31CD	00	Torque Command Filter Time	RW	INT32	0.01ms	0 to 2500	50
31CA	00	Speed Loop Gain	RW	INT32	rad/s	1 to 10000	500


Index	Subindex	Name	Access	Data Type	Unit	Range	Default
31CB	00	Speed Loop Integral Time	RW	INT32	0.1ms	1 to 5000	125
31D4	00	Speed Feedforward	RW	INT32	%	0 to 100	0
31D5	00	Speed Feedforward Filter Time	RW	INT32	0.1ms	0 to 640	0
31D6	00	Torque Feedforward	RW	INT32	%	0 to 100	0
31D7	00	Torque Feedforward Filter Time	RW	INT32	0.1ms	0 to 640	0
31FC	00	Model Following Control Gain Correction	RW	INT32	%	20 to 500	100
31FE	00	Model Following Control Torque Feedforward	RW	INT32	%	0 to 200	100
3201	00	Limit for Load Oscillation Suppression	RW	INT32	rpm	0 to 1000	100
	00	Internal Torque Feedforward Method	RW	INT32	_	0 to 3	0
3169	02	Torque Feedforward Method	RW	INT32	-	0 to 3	0
	03	Speed Feedforward Method	RW	INT32	-	0 to 3	0

RPDO	TPDO	Remarks
6040h: Controlword	6041h: Statusword	Mandatory
60FF: Target Velocity	_	Mandatory
-	6064h: Position Actual Value	Optional
-	606Ch: Velocity Actual value	Optional
6083h: Profile Acceleration	-	Optional
6084h: Profile Deceleration	_	Optional
6060h: Modes of operation	6061h: Modes of Operation display	Optional

7.6.2 Cyclic Synchronous Velocity (CSV) Mode

In this mode of operation, the host controller gives the target speed in 60FFh to the Drive using cyclic synchronization. Speed control and torque control are performed by the Drive.

Block Diagram

Speed Limit

The speed limit is determined by the smaller of 6080h value and 607F value.

Object	Bit	Name	Value	Description	Description			
	0	Switch on	0	Disabled				
	U	SWILCH OH	1	Enabled				
	1	Enable voltage	0	Disabled				
	'	Lilable voltage	1	Enabled	If Bit0 to Bit3 are all 1, the Drive			
Controlword	2	Quick stop	0	Disabled	starts running.			
6040h	2	Quick stop	1	Enabled				
	3	Enable	0	Disabled				
		operation	1	Enabled				
			0	Executes	Executes or continues operation.			
		Halt	1	Stops the axis according to <i>Halt Option Code</i> (605Dh)				
	10	Target reached	0	Reserved				
	12	Drive follows	0	Drive does not follow the target value (position, velocity or torque)				
Statusword 6041h	12	the command value	1	Drive follovelocity o	ows the target value (position, or torque)			
	13	Following organ	0	No follow	ing error			
	13	Following error	1	Following	error			
	15	Homeflag	0	Homing no	ot completed			

Object	Bit	Name	Value	Description
			1	Homing completed

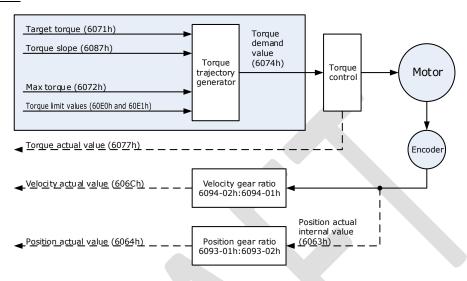
Index	Subindex	Name	Access	Data Type	Unit	Range	Default
603F	00	Error Code	RO	UINT16	-	0 to 65535	0
6040	00	Controlword	RW	UINT16	-	0 to 65535	0
6041	00	Statusword	RO	UINT16	-	0 to 0xFFFF	0
6060	00	Modes of operation	RW	INT8	-	0 to 10	0
6061	00	Modes of Operation Display	RO	INT8	_	0 to 10	0
607F	00	Max Profile Velocity	RW	UINT32	Reference unit/s	0 to 4294967295	_
6063	00	Position Actual Internal Value	RO	INT32	Encoder unit	-2147483648 to 2147483647	_
6064	00	Position Actual Value	RO	INT32	Reference unit	-2147483648 to 2147483647	_
60FF	00	Target Velocity	RW	INT32	Reference unit/s	-2147483648 to 2147483647	0
606C	00	Velocity Actual value	RO	INT32	Reference unit/s	-	_
6077	00	Torque actual value	RO	INT16	0.1%	-5000 to 5000	0
6083	00	Profile Acceleration	RW	UINT32	Reference unit/s ²	0 to 4294967295	0
6084	00	Profile Deceleration	RW	UINT32	Reference unit/s ²	0 to 4294967295	0
60B1	00	Velocity Offset	RW	INT32	Reference unit/s	-2147483648 to 2147483647	0
60B2	00	Torque Offset	RW	INT16	0.1%	-32768 to +32767	0
60E0	00	Positive Torque Limit Value	RW	UINT16	0.1%	0 to 65535	_
60E1	00	Negative Torque Limit Value	RW	UINT16	0.1%	0 to 65535	-
31CD	00	Torque Command Filter Time	RW	INT32	0.01ms	0 to 2500	50
31CA	00	Speed Loop Gain	RW	INT32	rad/s	1 to 10000	500
31CB	00	Speed Loop Integral Time	RW	INT32	0.1ms	1 to 5000	125
31D4	00	Speed Feedforward	RW	INT32	%	0 to 100	0

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
31D5	00	Speed Feedforward Filter Time	RW	INT32	0.1ms	0 to 640	0
31D6	00	Torque Feedforward	RW	INT32	%	0 to 100	0
31D7	00	Torque Feedforward Filter Time	RW	INT32	0.1ms	0 to 640	0
31FC	00	Model Following Control Gain Correction	RW	INT32	%	20 to 500	100
31FE	00	Model Following Control Torque Feedforward	RW	INT32	%	0 to 200	100
3201	00	Limit for Load Oscillation Suppression	RW	INT32	rpm	0 to 1000	100
	00	Internal Torque Feedforward Method	RW	INT32	-	0 to 3	0
3169	02	Torque Feedforward Method	RW	INT32	-	0 to 3	0
	03	Speed Feedforward Method	RW	INT32	-	0 to 3	0

RPDO	TPDO	Remarks
6040h: Controlword	6041h: Statusword	Mandatory
60FFh: Target Velocity		Mandatory
-	6064h: Position Actual Value	Optional
-	606Ch: Velocity Actual value	Optional
6060h: Modes of operation	6061h: Modes of Operation display	Optional

7.7 Torque Control

7.7.1 Profile Torque (PT) Mode



PT mode settings: 6060h (Modes of operation) = 4

Confirmation of PT mode: 6061h (Modes of operation display) = "4"

In this mode of operation, the host controller gives the target torque in 6071h and torque slope in 6087h to the Drive. Torque control is performed by the Drive. The Drive regulates the speed when the speed reaches the limit.

Block Diagram

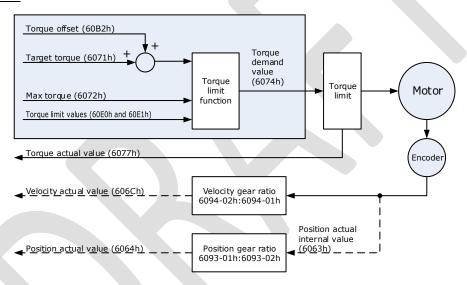
Speed Limit

The speed limit is determined by the smaller of 6080h value and 607F value.

Object	Bit	Name	Value	Description				
	0	Switch	0	Disabled				
	U	on	1	Enabled				
	1	Enable	0	Disabled				
	I	voltage	1	Enabled	If Bit0 to Bit3 are all 1, the Drive starts			
Controlword	2	Quick stop	0	Disabled	running.			
6040h	4		1	Enabled				
	3	Enable operation	0	Disabled				
			1	Enabled				
			0	Executes	or continues operation.			
	8		1	Stops the axis according to Halt Option Code (605Dh)				
Statusword 6041h	10	Target reached	0	 Halt (Bit 8 in Controlword) = 0: Target position not reached Halt (Bit 8 in Controlword) = 1: Axis decelerates 				

Object	Bit	Name	Value	Description
			1	 Halt (Bit 8 in Controlword) = 0: Target position reached Halt (Bit 8 in Controlword) = 1: Velocity of axis is 0
	12	_	0	Reserved
	13	_	0	Reserved
	15	Homeflag	0	Homing not completed
			1	Homing completed

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
603F	00	Error Code	RO	UINT16	-	0 to 65535	0
6040	00	Controlword	RW	UINT16	-	0 to 65535	0
6041	00	Statusword	RO	UINT16	-	0 to 0xFFFF	0
6060	00	Modes of operation	RW	INT8	-	0 to 10	0
6061	00	Modes of Operation display	RO	INT8		0 to 10	0
6071	00	Target Torque	RW	INT16	0.1%	-32768 to +32768	0
6072	00	Target Demand Value	RO	INT16	0.1%	_	_
6074	00	Target Demand Value	RO	INT16	0.1%	_	-
6077	00	Torque actual value	RO	INT16	0.1%	-5000 to 5000	0
607F	00	Max Profile Velocity	RW	UINT32	Reference unit/s	0 to 4294967295	_
6087	00	Velocity Actual value	RO	INT32	Reference unit/s	_	_
31CD	00	Torque Command Filter Time	RW	INT32	0.01ms	0 to 2500	50
31CA	00	Speed Loop Gain	RW	INT32	rad/s	1 to 10000	500
31CB	00	Speed Loop Integral Time	RW	INT32	0.1ms	1 to 5000	125


RPDO	TPDO	Remarks
6040h: Controlword	6041h: Statusword	Mandatory
6071h: Target Torque	-	Mandatory

RPDO	TPDO	Remarks
6087h: Target Slope	-	Optional
_	6064h: Position Actual Value	Optional
-	606Ch: Velocity Actual value	Optional
-	6077h: Torque actual value	Optional
6060h: Modes of operation	6061h: Modes of Operation display	Optional

7.7.2 Cyclic Synchronous Torque (CST) Mode

In this mode of operation, the host controller gives the target torque in 6071h to the Drive using cyclic synchronization. Torque control is performed by the Drive. The Drive regulates the speed when the speed reaches the limit.

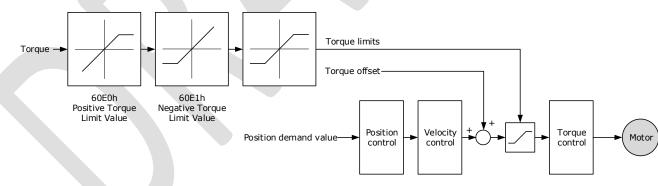
Block Diagram

Speed Limit

The speed limit is determined by the smaller of 6080h value and 607F value.

Object	Bit	Name	Value	Description		
	0	Switch on	0	Disabled		
		SWILCH OH	1	Enabled		
Controlword	1	Enable voltage	0	Disabled	If Bit0 to Bit3 are all 1, the Drive	
6040h		Lilable voltage	1	Enabled	starts running.	
	2	Quick stop	0	Disabled		
		Quick stop	1	Enabled		

Object	Bit	Name	Value	Description
	3	Enable eneration	0	Disabled
	3	Enable operation	1	Enabled
			0	Executes or continues operation.
	8	Halt	1	Stops the axis according to <i>Halt Option Code</i> (605Dh)
	10	Target reached	0	Reserved
	12	Drive follows the	0	Drive does not follow the target value (position, velocity or torque)
Statusword		command value	1	Drive follows the target value (position, velocity or torque)
6041h	13	Following orror	0	No following error
	13	Following error	1	Following error
	15	Homoflag	0	Homing not completed
	13	Homeflag	1	Homing completed


Index	Subindex	Name	Access	Data Type	Unit	Range	Default
603F	00	Error Code	RO	UINT16	-	0 to 65535	0
6040	00	Controlword	RW	UINT16	-	0 to 65535	0
6041	00	Statusword	RO	UINT16	-	0 to 0xFFFF	0
6060	00	Modes of operation	RW	INT8	_	0 to 10	0
6061	00	Modes of Operation display	RO	INT8	-	0 to 10	0
606C	00	Velocity Actual value	RO	INT32	Reference unit/s	_	_
6071	00	Target Torque	RW	INT16	0.1%	-32768 to +32768	0
6074	00	Target Demand Value	RO	INT16	0.1%	-	_
6077	00	Torque actual value	RO	INT16	0.1%	-5000 to 5000	0
60B2	00	Torque Offset	RW	INT16	0.1%	-32768 to +32767	0
60E0	00	Positive Torque Limit Value	RW	UINT16	0.1%	0 to 65535	-
60E1	00	Negative Torque Limit Value	RW	UINT16	0.1%	0 to 65535	_
31CD	00	Torque Command Filter Time	RW	INT32	0.01ms	0 to 2500	50
31CA	00	Speed Loop Gain	RW	INT32	rad/s	1 to 10000	500

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
31CB	00	Speed Loop Integral Time	RW	INT32	0.1ms	1 to 5000	125

RPDO	TPDO	Remarks
6040h: Controlword	6041h: Statusword	Mandatory
6071h: Target Torque	-	Mandatory
-	6064h: Position Actual Value	Optional
-	606Ch: Velocity Actual value	Optional
-	6077h: Torque actual value	Optional
6060h: Modes of operation	6061h: Modes of Operation display	Optional

7.8 Torque Limits

The following figure shows the block diagram for the torque limits. The torque is limited by the objects 60E0h and 60E1h.

Positive Torque Limit Value (60E0h)

This object sets the positive torque limit. Set the value in units of 0.1% of the Motor rated torque.

The positive torque limit value is the smaller of 6072h and 60E0h.

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
60E0	00	PosTorLimit	RW	UINT16	_	0 to 3000	3000

Negative Torque Limit Value (60E1h)

This object sets the negative torque limit. Set the value in units of 0.1% of the Motor rated torque.

The negative torque limit value is the smaller of 6072h and 60E1h.

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
60E1	00	NegTorLimit	RW	UINT16	1	0 to 3000	3000

7.9 Digital and Remote I/O Signals

Digital Inputs (60FDh)

This object gives the status of the digital inputs to CN1 on the Drive.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60FDh	0	Digital Inputs	UINT32	RO	Yes	_

Bit	Signal	Description			
0	NOT	0: Switched off; 1: Switched on			
1	РОТ	0: Switched off; 1: Switched on			
2	Home switch	0: Switched off; 1: Switched on			
3 to 15	-	Reserved			
16	CN1-14	0: Switched off (Active); 1: Switched on (Inactive)			
17	CN1-15	0: Switched off (Active); 1: Switched on (Inactive)			
18	CN1-16	0: Switched off (Active); 1: Switched on (Inactive)			
19	CN1-17	0: Switched off (Active); 1: Switched on (Inactive)			
20	CN1-18	0: Switched off (Active); 1: Switched on (Inactive)			
21 to 35	-	Reserved			

NOTE

If the corresponding bit of Pn509 and Pn510 has been set to **Remote**, the input signal on CN1 terminal is only used as remote input IO, and the Drive will ignore its status.

Digital Outputs (60FEh)

This object controls the status of both general-purpose output signals and remote output signals from CN1 on the Drive. 60FE-01h is used to control the status of the output signals. 60FE-02h determines which output signals in subindex 1 are enabled.

The Bit16 to Bit19 in 60FE-01h can only assign to the general-purpose output signals on CN1, and set the Bit mask (60EF-02h) to 1 for enabling them. And then, according to the settings of

Pn509 and Pn510 to allocate the desired signals, also you can choose whether to reverse them by the setting of Pn516 and Pn517.

For the bits transmitted on the bus, you also need to set Pn512 and Pn513 to enable it.

The Bit24 to Bit27 in 60FE-01h can assign to the remote output signals on CN1, and according to the setting of Pn511 to allocate the desired signals, using as a remote IO for the master station.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Digital outputs	UINT8	RO	No	2
60FEh	1	Physical outputs	UINT32	RW	Yes	0 to 0xFFFFFFF Default: 0
	2	Bit mask	UINT32	RW	Yes	0 to 0xFFFFFFF Default: 0

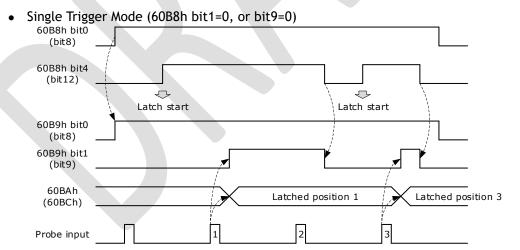
Bit	Signal	Description			
0 to 15	-	Reserved			
16	CN1-14	0: Switched off (Active), 1: Switched on (Inactive)			
17	CN1-15	0: Switched off (Active), 1: Switched on (Inactive)			
18	CN1-16	0: Switched off (Active), 1: Switched on (Inactive)			
19	CN1-17	0: Switched off (Active), 1: Switched on (Inactive)			
20	CN1-18	0: Switched off (Active), 1: Switched on (Inactive)			
21 to 23	_	Reserved			
24	Remote0	0: Switched off (Active), 1: Switched on (Inactive)			
25	Remote1	0: Switched off (Active), 1: Switched on (Inactive)			
26 to 31	-	Reserved			

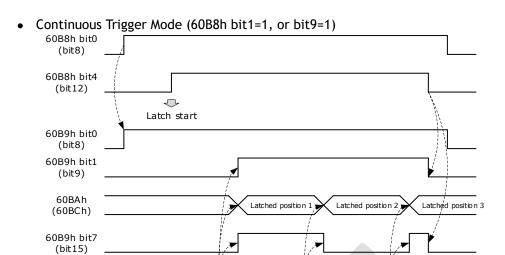
7.10 Touch Probe

You can latch the feedback position with the following trigger events.

- Trigger with Touch Probe Input 1 (EXT1 signal)
- Trigger with Touch Probe Input 2 (EXT2 signal)
- Trigger with encoder zero signal (phase C)

The following two touch probe latches can be used at the same time.


- Touch Probe Input 1
 - Latch control object: 60B8h (bits 0 to 7)
 - Latch status object: 60B9h (bits 0 to 7)


- The latched position is always stored in touch probe 1 position value (60BAh and 60BBh).
- Trigger signal: Encoder zero signal or EXT1 signal
- Touch Probe Input 2
 - Latch control object: 60B8h (bits 8 to 15)
 - Latch status object: 60B9h (bits 8 to 15)
 - The latched position is always stored in touch probe 2 position value (60BCh and 60BDh).
 - Trigger signal: Encoder zero signal or EXT2 signal

The relevant objects used in this function are as following:

Index	Subindex	Name	Access	Data Type	PDO Mapping	Default
60B8	00	Touch Probe Function	RW	UINT16	Yes	_
60B9	00	Touch Probe Status	RO	UINT16	Yes	_
60BA	00	Touch Probe Pos 1 Pos Value	RO	INT32	Yes	_
60BB	00	Touch Probe Neg 1 Pos Value	RO	INT32	Yes	_
60BC	00	Touch Probe Pos 2 Pos Value	RO	INT32	Yes	_
60BD	00	Touch Probe Neg 2 Pos Value	RO	INT32	Yes	_

The examples of execution procedure for a Touch Probe are as following:

60B8h: Touch Probe Function

Probe input

This object sets the touch probes.

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
60B8	00	Touch Probe Function	RW	UINT16	ı	0 to 0xFFFF	0

The data description is as following.

Bit	Value	Definition
	0	Disables touch probe 1.
0	1	Enables touch probe 1.
	0	Single Trigger Mode (Latches the position at the first trigger event).
1	1	Continuous Trigger Mode (Latches the position every trigger event).
2	0	Triggers on probe 1 input (CN1-1, EXT1 signal).
	1	Triggers on encoder zero signal (phase C).
3	0	Reserved
4	0	Disables the sampling at the rising edge of touch probe 1 input
4	1	Enables the sampling at the rising edge of touch probe 1 input
5	0	Disables the sampling at the falling edge of touch probe 1 input
3	1	Enables the sampling at the falling edge of touch probe 1 input
6, 7	0	Reserved
8	0	Disables touch probe 1.
0	1	Enables touch probe 1.
9	0	Single Trigger Mode (Latches the position at the first trigger event).

Bit	Value	Definition
	1	Continuous Trigger Mode (Latches the position every trigger event).
10	0	Triggers on probe 2 input (CN1-3, EXT2 signal).
10	1	Triggers on encoder zero signal (phase C).
11	0	Reserved
12	0	Disables the sampling at the rising edge of touch probe 2 input
12	1	Enables the sampling at the rising edge of touch probe 2 input
13	0	Disables the sampling at the falling edge of touch probe 2 input
13	1	Enables the sampling at the falling edge of touch probe 2 input
14, 15	0	Reserved

60B9h: Touch Probe Status

This object gives the status of the touch probes.

ı	Index	Subindex	Name	Access	Data Type	Unit	Range	Default
(60B9	00	Touch Probe Status	RO	UINT16	-	_	-

Bit	Value	Definition			
0	0	Touch probe 1 is disabled.			
0	1	Touch probe 1 is enabled.			
1	0	No latched position of the rising edge is stored for touch probe 1.			
1	1	A latch position of the rising edge is stored for touch probe 1.			
2	0	No latched position of the falling edge is stored for touch probe 1.			
2	1	A latch position of the falling edge is stored for touch probe 1.			
3 to 5	0	Reserved			
6, 7	0 to 3	Record the number of the touch probe 1 executions in the Continuous Trigger Mode. Values are cycled between 0 and 3.			
8	0	Touch probe 2 is disabled.			
0	1	Touch probe 2 is enabled.			
9	0	No latched position of the rising edge is stored for touch probe 2.			
9	1	A latch position of the rising edge is stored for touch probe 2.			
10	0	No latched position of the falling edge is stored for touch probe 2.			
10	1	A latch position of the falling edge is stored for touch probe 2.			
11 to 13 0		Reserved			
121 15 111		Record the number of the touch probe 2 executions in the Continuous Trigger Mode. Values are cycled between 0 and 3.			

60BAh: TouchProbePos1PosValue

This object gives the latched position of the rising edge for touch probe 1.

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
60BA	00	TouchProbePos1PosValue	RO	INT32	1	1	-

60BBh: TouchProbeNeg1PosValue

This object gives the latched position of the falling edge for touch probe 1.

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
60BB	00	TouchProbeNeg1PosValue	RO	INT32	-	_	_

60BCh: TouchProbePos2PosValue

This object gives the latched position of the rising edge for touch probe 2.

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
60BC	00	TouchProbePos2PosValue	RO	INT32	-	-	-

60BDh: TouchProbeNeg2PosValue

This object gives the latched position of the falling edge for touch probe 2.

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
60BD	00	TouchProbeNeg2PosValue	RO	INT32	ı	ı	_

Pn509.3 Pn510.0 parameter

Pn509.3 and Pn510.0 parameters are mainly used to distribute signals to PIN CN1-17 and PIN CN1-18 respectively, and the set values 8 and 9 correspond to EXT1 (Probe TouchProbe Input 1) and EXT2 (Probe TouchProbe Input 2), respectively.

Parameter	Name	Setpoint	Meaning	
		8	Probe TouchProbe enter 1	
Pn509.3	CN1-17 Distribute the signal	9	Probe TouchProbe enter 2	
		0~7	Other signals	
		8	Probe TouchProbe enter 1	
Pn510.0	CN1-18 Distribute the signal	9	Probe TouchProbe enter 2	
		0~7	Other signals	

Pn332 parameter

The Pn332 is primarily used to set the filter time of the TouchProbe function input pins.

Parameter	Name	Range	Unit	Def
Pn332	Touch probe Input signal filtering time	0~ 200	10 ns	20

Pn516.3 Pn517.0 parameter

The user can choose whether to reverse the CN1-17 distribution signal and the CN1-18 distribution signal through Pn516.3 and Pn517.0 parameters, which generally needs to be set according to the actual input signal level used.

Paramet er	Setpoi nt	Meaning	When to take effec t
DoE46.2	0	No anti- CN1-17 distributio n signal (effective at low levels)	
Pn516.3	1	Reverse CN1-17 distributio n signal (effective at high level)	Rebo
Dr.E47.0	0	No anti- CN1-18 distributio n signal (effective at low level)	ot
Pn517.0	1	Reverse CN1-18 distributio n signal (effective at high level)	

7.11 Soft Limit Function

This object defines the absolute positions of the limits to the target position (position demand value). Every target position is checked against these limits.

The limit positions are specified in user-defined position reference units, the same as for target positions, and are always relative to the machine home position.

The limit values are corrected internally for the home offset as given below. The target positions are compared with the corrected values.

- Corrected minimum position limit = Min position limit Home offset (607Ch)
- Corrected maximum position limit = Max position limit Home offset (607Ch)

The software position limits are enabled at the following times:

- When homing is completed
- When an absolute encoder is connected

The software limits are enabled if Min position limit < Max position limit.

Index	Subindex	Name	Access	Data Type	Unit	Range	Default
	00	Software position	RO	UINT8	-	0 to 65535	0
607D	01	Min position limit	RW	INT32	_	-2147483648 to 2147483647	-
	02	Max position limit	RW	INT32	-	-2147483648 to 2147483647	_

7.12 Position Comparison Function

The Position Comparison (PSO) function applies the real-time position data to compare it with the values stored in the data array in advance and, when the comparison condition holds, immediately outputs a DO signal with settable pulse width or settable level status for subsequent motion control.

7.12.1 Related Parameters

Name	Description	Parameter Range & Factory Default	Pn Parameter	
CN1O Pin Assign PSO1 Signal	Set to assign the PSO1 signal for the corresponding pin of D	Range: 0000-00DD, Factory default: 0010	Pn511	

PSO1 Position Value Resolution	Number of pulses to be added to the position value for one revolution of the motor 0: 2e24 1: 2e23 2: 2e22 3: 2e21 4: 2e20 5: 2e19 6: 2e18 7: 2e17 8: 2e16 9: 2e15 10: 2e14	Range: 0~10, Factory default: 7	Pn600	
PPSO1 Comparison Mode Selection	PSO mode setting: bit0: 0: Absolute position comparison mode 1: Incremental position comparison mode bit1: 0: Single comparison 1: Cyclic comparison	Range: b0000-b0011, Factory default: b0000	Pn601	
PSOO1 Output Type Selection	Output type selection: 0: Initial level is low, active level is high 1: Initial level is high, active level is low	Range: 0~1, Factory default: 0	Pn602	

PSO1 Output Polarity	Output type selection: 0: Pulse width output 1: Level output	Range: 0-1, Factory default: 0	Pn603
PSO1 Output Pulse Width Setting	Pulse output width Ranged from 1 to 10,000, in 100us.	Range: 1~10000, Factory default: 100	Pn604
PSO1 Output Delay Compensation Time	Time delay compensation time Ranged from 0 to 200, in 1us.	Range: 1-200, Factory default: 0	Pn605
PSO1 Origin Offset	After setting the Origin, the current position is updated to the home offset value, ranged from - 2e31 to 2e31-1	Range: - 2147483648~2147483647, Factory default: 0	Pn606
PSO1 Starting Point of Comparison		Range: 1~20, Factory default:1	Pn607
PSO1 Ending Point of Comparison		Range: 1~20, Factory default:8	Pn608
Attribute of PSO1 Comparison Point 1	①When the output mode is pulse output 0: Comparison logic skips the point 1: Traverses forward the comparison point and outputs 2: Traverses backward the	Range: 0~6, Factory default: 0	Pn609

comparison point and outputs 3: Reverses the comparison point forward and backward and outputs 4~6: Comparison logic skips the point ②When the output mode is level output 0: Comparison logic skips the point 1: Traverses forward the comparison point and outputs; the output level is active 2: Traverses backward the comparison point and outputs; the output level is active 3: Forward and reverse crossing of the comparison point and outputs; the output level is active 4: Traverses forward the comparison point and outputs; output level is initial one 5: Traverses backward the

comparison point and outputs; the

	output level is the initial one 6: Traverses the comparison point forward and backward and outputs; the output level is the initial one		
Target Position of PSO1 Comparison Point 1	The target position of Comparison Point 1	Range: - 2147483648~2147483647, Factory default: 0	Pn610
Attribute of PSO1 Comparison Point 2	Consistent with Pn609	Range: 0-6, Factory default: 0	Pn611
Target Position of PSO1 Comparison Point 2	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn612
Attribute of PSO1 Comparison Point 3	Consistent with Pn609	Range: 0~6, Factory default: 0	Pn613
Target Position of PSO1 Comparison Point 3	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn614
Attribute of PSO1 Comparison Point 4	Consistent with Pn609	Range: 0-6, Factory default: 0	Pn615
Target Position of PSO1 Comparison Point 4	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn616

Attribute of PSO1 Comparison Point 5	Consistent with Pn609	Range: 0~6, Factory default: 0	Pn617
Target Position of PSO1 Comparison Point 5	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn618
Attribute of PSO1 Comparison Point 6	Consistent with Pn609	Range: 0-6, Factory default: 0	Pn619
Target Position of PSO1 Comparison Point 6	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn620
Attribute of PSO1 Comparison Point 7	Consistent with Pn609	Range: 0~6, Factory default: 0	Pn621
Target Position of PSO1 Comparison Point 7	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn622
Attribute of PSO1 Comparison Point 8	Consistent with Pn609	Range: 0~6, Factory default: 0	Pn623
Target Position of PSO1 Comparison Point 8	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn624
Attribute of PSO1 Comparison Point 9	Consistent with Pn609	Range: 0-6, Factory default: 0	Pn625
Target Position of PSO1 Comparison Point 9	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn626
Attribute of PSO1	Consistent with Pn609	Range: 0-6, Factory default: 0	Pn627

Comparison Point 10			
Target Position of PSO1 Comparison Point 10	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn628
Attribute of PSO1 Comparison Point 11	Consistent with Pn609	Range: 0~6, Factory default: 0	Pn629
Target Position of PSO1 Comparison Point 11	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn630
Attribute of PSO1 Comparison Point 12	Consistent with Pn609	Range: 0~6, Factory default: 0	Pn631
Target Position of PSO1 Comparison Point 12	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn632
Attribute of PSO1 Comparison Point 13	Consistent with Pn609	Range: 0~6, Factory default: 0	Pn633
Target Position of PSO1 Comparison Point 13	Consistent with Pn610	Range: - 2147483648-2147483647, Factory default: 0	Pn634
Attribute of PSO1 Comparison Point 14	Consistent with Pn609	Range: 0~6, Factory default: 0	Pn635
Target Position of PSO1 Comparison Point 14	Consistent with Pn610	Range: - 2147483648-2147483647, Factory default: 0	Pn636
Attribute of PSO1 Comparison Point 15	Consistent with Pn609	Range: 0~6, Factory default: 0	Pn637

Target Position of PSO1 Comparison Point 15	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn638
Attribute of PSO1 Comparison Point 16	Consistent with Pn609	Range: 0~6, Factory default: 0	Pn639
Target Position of PSO1 Comparison Point 16	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn640
Attribute of PSO1 Comparison Point 17	Consistent with Pn609	Range: 0~6, Factory default: 0	Pn641
Target Position of PSO1 Comparison Point 17	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn642
Attribute of PSO1 Comparison Point 18	Consistent with Pn609	Range: 0-6, Factory default: 0	Pn643
Target Position of PSO1 Comparison Point 18	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn644
Attribute of PSO1 Comparison Point 19	Consistent with Pn609	Range: 0~6, Factory default: 0	Pn645
Target Position of PSO1 Comparison Point 19	Consistent with Pn610	Range: - 2147483648~2147483647, Factory default: 0	Pn646
Attribute of PSO1 Comparison Point 20	Consistent with Pn609	Range: 0~6, Factory default: 0	Pn647
Target Position of	Consistent with Pn610	Range: -	Pn648

PSO1	2147483648~2147483647,	
Comparison	Factory default: 0	
Point 20		

S/N	Name	Specification	Definition	Attril
			0: Turn off the PSO1 comparison output and set PSO1 State bit0 to 0	
		bit0: comparison of output enable	1: After setting from 0 to 1, turn on the PSO1 comparison output and set PSO1 State bit0 to 1 at the same time	
1 PSO1 Function	bit1: Origin setting	0: Set PSO1 State bit1 to 0 1: After setting from 0 to 1, update the current position to the home bias value (Pn606) and set PSO1 State bit1 to 1 after the update is done	0x30l RW YES Uint1	
		bit2: Single adjustment of current position	0: Set PSO1 State bit2 to 0 1: After setting from 0 to 1, adjust the current position in real time and set PSO1 State	

			bit2 to 1 after the adjustment is done	
2	PSO1 Current State Position Adjustment Value	PSO1 current position adjustment value	After PSO1 Function bit2 is changed from 0 to 1, the Current Position = Current Position + Adjusted Value	0x30l RW YES Uint1
		bit0: comparison output in progress	0: Comparison output not in progress 1: Comparison output in progress	
3	PSO1 State	bit1: Origin setting done	0: Origin setting not done 1: Origin setting done	0x300 RO YES Uint1 Un02
		bit2: Single adjustment of current position done	0: Current position not adjusted 1: Current position adjusted	
4	PSO1 Current State Target Comparison Point			0x300 RO YES Uint1 Un02
5	PSO1 Current Position			0x300 RO YES Uint1 Un02

7.12.2 PSO Function Operation

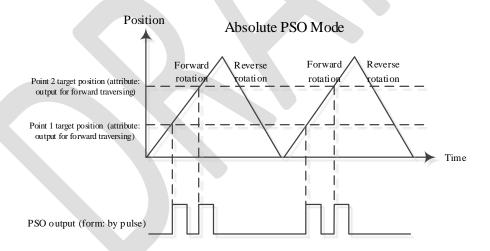
PSO ON

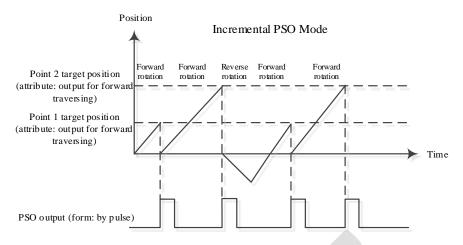
Set the PSO1 Function bit0 from 0 to 1 to turn on the PSO function. The target comparison point of PSO1 current state is the starting one, and PSO1 State bit0 is set to 1.

Set the PSO1 Function bit0 to 0 to turn off the PSO function. The current comparison status is reset and PSO1 State bit0 is set to 0.

Position Value Resolution

Pn600 is used to set the position value resolution for PSO. The resolution is defined as the number of pulses accumulated by the PSO1 position value for one revolution of the motor. The position value resolution for PSO does not need to be aligned with the encoder resolution, it is only associated with Pn600. The resolution of the position value can be reduced when the position value falls beyond the range of int32.


Comparison Mode Selection


The Pn601 is used to set the comparison mode.

(1) Absolute and Incremental Comparison Mode

Set Pn601.0 to 0: By selecting the absolute position comparison mode, each target comparison point position is absolute. The current position is not reset after each comparison point is completed.

Set Pn601.0 to 1: By selecting the incremental position comparison mode, each target comparison point position is incremental. After each comparison point is completed, the current position is automatically reset and recounted.

(2) Single Comparison and Cyclic Comparison

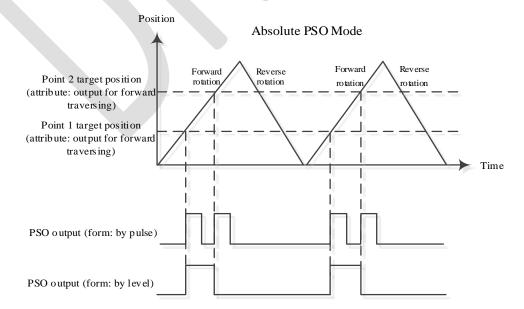
Set Pn601.1 to 0: By selecting the Single Comparison mode, when the point comparison is ended, the comparison enable is turned off automatically and PSO1 State bit0 is set to 0. When setting PSO1 Function bit0 from 0 to 1, the PSO function is turned on again.

Set Pn601.1 to 1: By selecting the Cyclic Comparison mode, when the point comparison is ended, the comparison enable is not turned off, and the comparison point of current state is reset to the starting one for cyclic comparison.

Output Level Polarity

Set Pn602 to adjust the output level polarity.

Set Pn602 to 0: initial level is low, while active level is high


Set Pn602 to 1: initial level is high, while active level is low

Output Type Setting

Pn603 is used to set the output type of the PSO.

Set Pn603 to 0: The PSO outputs a pulse signal with a settable width.

Set Pn603 to 1: The PSO outputs a level signal with a settable level.

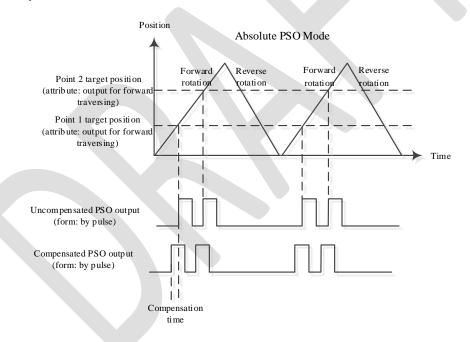
Pulse Output Width Setting

When the PSO output type is of a pulse width, the output pulse width can be set via the Pn604, ranging from 1 to 10,000, in 100µs.

Origin Setting

By setting PSO1 Function bit1 from 0 to 1, the current position is updated to the Origin Bias (Pn606), and PSO1 State bit1 is set to 1.

Set both the PSO1 Function bit1 and PSO1 State bit1 to 0.


Single Adjustment of Current Position

After Setting PSO1 Function bit2 from 0 to 1, the current position is adjusted in real time, and the Current Position = Current Position + Adjustment Value (written via 0x30B1). Then, set the PSO1 State bit2 to 1.

Set both the PSO1 Function bit2 and PSO1 State bit2 to 0.

Time Delay Compensation

When the terminal device receiving the PSO DO signal has a response delay, or when there's a delay in the transmission of the PSO DO signal, the delay compensation time can be set via the Pn605 and the PSO output will be output earlier, thereby offsetting the effect of the delay.

7.13 Absolute Encoder Settings (Fn010, Fn011)

Way to set the absolute encoders:

Set Pn002.2 to 0 when starting the machine initially.

When the alarms A.45~A.48 and A.51 occur, they must be cleared by means of Fn010 and Fn001.

Please use the panel operator or execute the Fn010 and Fn001 functions via the bus. The bus SDO clears the encoder multi-turn or alarm by following means:

• Execute the Fn010 function by writing 1 to object 0x3685, subindex 1 via SDO communication;

• Execute the Fn001 function by writing 1 to object 0x3685, subindex 2 via SDO communication;

Note

- Please perform the encoder setting operation in the Servo 0FF state.
- When an absolute encoder alarm is displayed (A.45~A.48, A.51), perform the Setup (Initialization) to disarm the alarm. Using the alarm reset (ALM-RST) input signal of servo drive does not disarm the alarm.
- In the event of an alarm monitored internally by the encoder, disconnect the power supply to disarm the alarm.

Chapter 8 Trial Operation

8.1 Preparations for Trail Operation

The procedure for trial operation is given below.

Step	Meaning	Reference
1	Installation Install the Motor and Drive according to the installation conditions. First, operation is checked with no load. Do not connect the Motor to the machine.	Chapter 2
2	Wiring and Connections Wire and connect the Drive. First, Motor operation is checked without a load. Do not connect the CN1 connector on the Drive.	Chapter 3
3	Confirmations before Trial Operation	-
4	Power ON	_
5	Resetting the Absolute Encoder If an absolute encoder is used, it is necessary to reset the absolute encoder.	5.7

8.2 Inspections and Confirmations

To ensure safe and correct trial operation, check the following items before you start trial operation.

- Make sure that the Drive and Motor are installed, wired, and connected correctly.
- Make sure that the correct power supply voltage is supplied to the Drive.
- Make sure that there are no loose parts in the Motor mounting.
- If you are using a Motor with an Oil Seal, make sure that the oil seal is not damaged. Also
 make sure that oil has been applied.
- If you are performing trial operation on a Motor that has been stored for a long period of time, make sure that all Motor inspection and maintenance procedures have been completed.
- If you are using a Motor with a Holding Brake, make sure that the brake is released in advance. To release the brake, you must apply the specified voltage of 24 VDC to the brake, for details see the section 3.6.4 Holding Brake Wiring.

8.3 Motor Operation without a Load

You use jogging for trial operation of the Motor without a load.

Jogging is used to check the operation of the Motor without connecting the Drive to the host controller. The Motor is moved at the preset jogging speed.

- During jogging, the overtravel function is disabled.
- Consider the range of motion of your machine when you jog the Motor.

8.3.1 Preparations

Always check the following before you execute jogging.

- The main circuit power supply must be ON.
- There must be no alarms.
- The Servo must not be in Safe State.
- The servo must be OFF.
- The jogging speed must be set considering the operating range of the machine.

8.3.2 Applicable Tools

- Use the Panel Operator of the Drive
- Use the ESView V4 (Recommended)

8.3.3 JOG Operation

Use the Panel Operator of the Drive

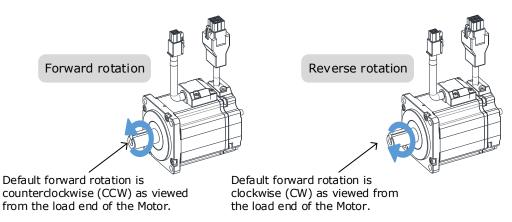
Before performing the JOG operation by using the Panel Operator, you shall check and set the relevant parameters properly.

For the method of checking and setting parameters by using the Panel Operator, refers to the section 4.1.4 Parameter Setting Mode.

Following the below steps to jog the Motor.

Step 1 Press [M] key several times to select the Utility Function Mode.

Step 2 Press [▲] key or [▼] key to select the function number Fn002.


Step 3 Press [◀] key, and Panel Operator displays as below.

Not lit for Servo ON

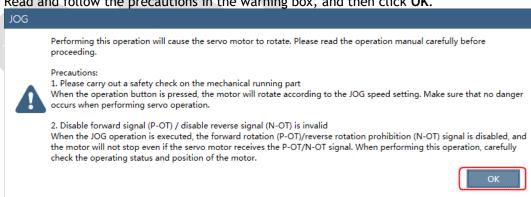
- Step 4 Press [M] key to Servo ON (supply power to Motor).
 - Press [M] key again to Servo OFF (not supply power to Motor).
- Step 5 Press [▲] key or [▼] key to run the Motor in forward or reverse direction.

Press and hold $[\blacktriangle]$ key or $[\blacktriangledown]$ key to run the Motor continuously.

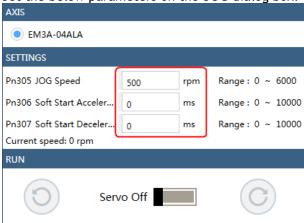
NOTE: The rotation direction of the Motor depends on the setting of Pn001.0 (CCW, CW). The figure above shows the default setting.

Step 6 Press the [◀] key to return to the display of the Fn002.

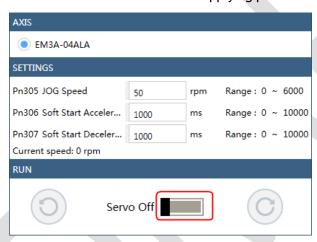
----End


Use the ESView V4

The Motor will operate only while a button is clicked on the ESView V4.


Step 1 Select Run > JOG in the Menu Bar of the ESView V4 main windows.

Step 2 Read and follow the precautions in the warning box, and then click OK.



Step 3 Set the below parameters on the **JOG** dialog box.

- Pn305 JOG Speed: set the speed for jogging the Motor.
- Pn306 Soft Start Acceleration Time: set the time it takes for the Motor runs to JOG speed.
- Pn307 Soft Start Deceleration Time: set the time it takes for the Motor stops from JOG speed.

Step 4 Click Servo Off / Servo On for supplying power to the Motor.

Step 5 Click the button or of for running the Motor.

Click and hold the button or can run the Motor continuously, and the Motor can stop running when you release the button.

----End

8.4 Motor Operation with a Load

8.4.1 Precautions

Operating mistakes that occur after the Motor is connected to the machine may not only damage the machine, but they may also cause accidents resulting in personal injury.

If you disabled the overtravel function for trial operation of the Motor without a load, enable the overtravel function (P-OT and N-OT signal) before you preform trial operation with the Motor connected to the machine in order to provide protection.

If you will use a holding brake, observe the following precautions during trial operation.

- Before you check the operation of the brake, implement measures to prevent vibration from being caused by the machine falling due to gravity or an external force.
- First check the Motor operation and brake operation with the Motor uncoupled from the machine. If no problems are found, connect the Motor to the machine and perform trial operation again.

Control the operation of the brake with the /BK (Brake) signal output from the Drive.

Failures caused by incorrect wiring or incorrect voltage application in the brake circuit may cause the Drive to fail, damage the Drive, damage the equipment, or cause an accident resulting in death or injury.

Observe the precautions and instructions for wiring and trial operation precisely as described in this manual.

8.4.2 Preparations

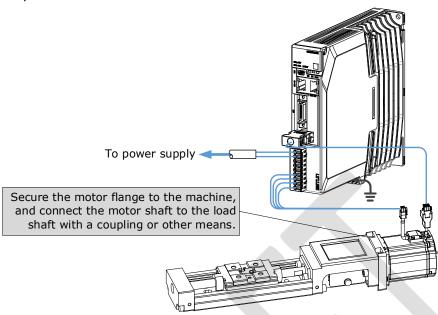
Always confirm the following before you perform the trial operation procedure for both the machine and Motor.

- Make sure that the Drive is connected correctly to both the host controller and the peripheral devices.
- Overtravel wiring
- Brake wiring
- Allocation of the /BK (Brake) signal to a pin on the I/O signal connector (CN1)
- Emergency stop circuit wiring
- Host controller wiring

8.4.3 Operation Procedure

Step 1 Enable the overtravel signals.

Refers to the section 5.3 Overtravel Limit.


Step 2 Make the settings for the protective functions, such as the safety function, overtravel, and the brake.

- For details on overtravel settings, refers to the section <u>5.3 Overtravel Limit</u>.
- For details on holding brake settings, refers to the section <u>5.6 Holding Brake</u>.

Step 3 Turn OFF the power supplies to the Drive.

The control power supply and main circuit power supply will turn OFF.

- Step 5 Turn ON the power supplies to the machine and host controller and turn ON the control power supply and main circuit power supply to the Drive.
- Step 6 Check the protective functions, such overtravel and the brake, to confirm that they operate correctly.
- Step 7 If necessary, adjust the servo gain to improve the Motor response characteristics. The Motor and machine may not be broken in completely for the trial operation. Therefore, let the system run for a sufficient amount of time to ensure that it is properly broken in.
- Step 8 For future maintenance, save the parameter settings with one of the following methods.
 - Use the ESView V4 to save the parameters as a file.
 - · Record the settings manually.

This concludes the procedure for trial operation with both the machine and Motor.

----End

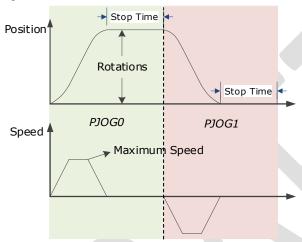
8.5 Program Jogging

You can use program jogging to perform continuous operation with a preset operation pattern, travel distance, movement speed, acceleration/deceleration time, waiting time, and number of movements.

You can use this operation when you set up the system in the same way as for normal jogging to move the Motor without connecting it to the host controller in order to check Motor operation and execute simple positioning operations.

8.5.1 Preparations

Always check the following before you execute program jogging.


- The parameters must not be written prohibited.
- The main circuit power supply must be ON.

- There must be no alarms.
- The Servo must not be in Safe State.
- The servo must be OFF.
- The range of machine motion and the safe movement speed of your machine must be considered when you set the travel distance and movement speed.
- There must be no overtravel.

8.5.2 Operation Description

Program jogging operation consists of two operation patterns (PJOG0 and PJOG1), you can set their relevant parameters respectively. Figure 8-1 shows an example of position-speed timing diagram in PJOG operation.

Figure 8-1 Position-speed timing diagram

The Drive will operator the Motor repeatedly according to the parameter settings of the two operation patterns until you stop the program jogging operation manually.

You can set the parameters Pn164 and Pn168 to a negative value for reversing the Motor, so that there are four ways of the operation in the program jogging, as is shown in Figure 8-2.

Round trip in positive direction

Speed

Movement in Positive direction

Speed

Speed

Speed

Movement in negative direction

Speed

Speed

Movement in negative direction

You shall set the Rotations (Pn164 and Pn168) and Max Speed (Pn165 and Pn169) to a proper value. If the Rotations is set too small or the Max Speed is set too large, it is possible that the maximum speed set cannot be reached. In this case, it is necessary to increase the Rotations or decrease the Max Speed.

8.5.3 Relevant Parameters

Parameter	Name	Range	Unit	Default	When Enabled
Pn164	Turns for PJOG0	-50 to 50	rotation	5	Immediately
Pn165	Max Speed for PJOG0	100 to 3000	rpm	1000	Immediately
Pn166	Acc./Dec. Time for PJOG0	50 to 2000	ms	500	Immediately
Pn167	Stop Time for PJOG0	100 to 10000	ms	1000	Immediately
Pn168	Turns for PJOG1	-50 to 50	rotation	5	Immediately
Pn169	Max Speed for PJOG1	100 to 3000	rpm	1000	Immediately
Pn170	Acc./Dec. Time for PJOG1	50 to 2000	ms	500	Immediately
Pn171	Stop Time for PJOG1	100 to 10000	ms	1000	Immediately

8.5.4 Applicable Tools

- Use the Panel Operator of the Drive
- Use the ESView V4 (Recommended)

8.5.5 Operation Procedure

Use the Panel Operator of the Drive

Before performing the Program Jogging (PJOG) operation by using the Panel Operator, you shall check and set the following parameters properly.

Check and set the parameters Pn164 to Pn171 as proper values in advance, and ensure the movable parts have sufficient travel in the forward and reverse directions.

For the method of checking and setting parameters by using the Panel Operator, refers to the section 4.1.4 Parameter Setting Mode.

The following are the steps to run the Motor between the two programmed operation patterns (PJOGO and PJOG1).

Step 1 Press [M] key several times to select the Utility Function Mode.

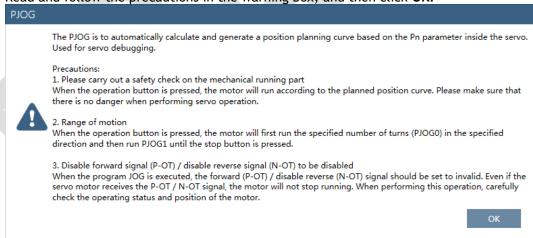
Step 2 Press [\blacktriangle] key or [\blacktriangledown] key to select the function number Fn018.

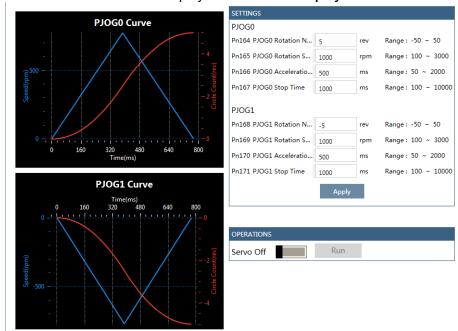
Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press [M] key to execute this operation, and Panel Operator displays as below.

Step 5 Press [◀] key to return to the display of the Fn018.

----End


Use the ESView V4

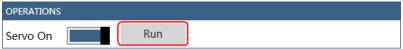

The Motor can be run between the two programmed operation patterns (PJOG0 and PJOG1) by executing PJOG function.

Step 1 Select Run > PJOG in the Menu Bar of the ESView V4 main windows.

Step 2 Read and follow the precautions in the warning box, and then click OK.

Step 3 The PJOG window will be displayed in Function Display Area.

Step 4 Set the relevant parameters for the operation patterns PJOG0 and PJOG1.



- Rotation Number: Set the numbers of rotation the Motor will run in the operation pattern PJOG0 or PJOG1.
 - NOTE: The Motor can be run in reverse when this parameter is set to a negative value.
- Rotation Speed: Set the Motor running speed in the operation pattern PJOG0 or PJOG1.
- Acceleration/Deceleration Time: Set the time it takes for the Motor runs to Rotation
 Speed or the Motor stops from Rotation Speed.
- **Stop Time:** Set the hold time when the Motor stops running in the operation pattern PJOG0 or PJOG1, and then switches to the other operation pattern.
- Step 5 Click **Apply** to complete the settings.

Step 6 Click Servo Off / Servo On for supplying power to the Motor.

Step 7 Click Run.

The Motor will be run between the operation patterns PJOG0 and PJOG1.

Click **Stop** for stopping the Motor running.

The Motor can be stopped when you close ESView V4 or PJOG window.

----End

Chapter 9 Tuning

9.1 Overview

9.1.1 Basic Conception

Tuning is the process of satisfying the servo performance by adjusting the parameters involved in the control law.

Tuning Flow

The process of tuning is usually an iterative process, and Figure 9-1 shows the general flow.

Set Parameters

Performance evaluation

Response acceptable

Yes

End

Figure 9-1 General flow

Parameter Classification

There are two types of parameters in the tuning.

- Function Parameters: refers to some application function selections or switches that may improve Servo performance.
- Adjustment Parameters: increasing or decreasing these parameters may improve Servo performance.

Servo Performance

In general, the indicators used to evaluate Servo performance are bandwidth, response time, overshoot, steady state error, anti-load disturbance, speed ripple fluctuation, torque ripple, and so on. Table 9-1 shows the comparison of the graphics before and after tuning in the example indicators.

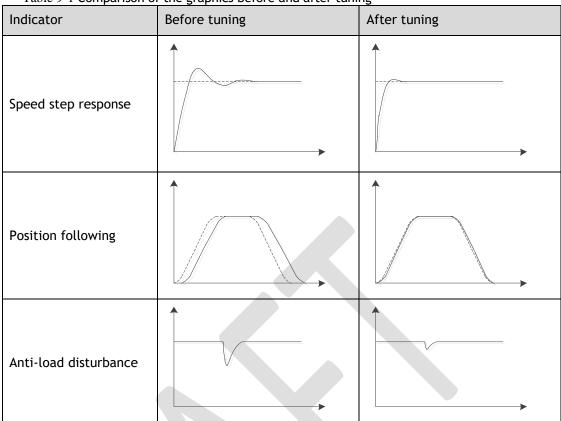
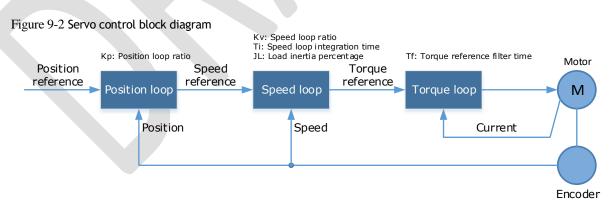



Table 9-1 Comparison of the graphics before and after tuning

9.1.2 Control Block Diagram

It is necessary to learn the Servo control principle and Figure 9-2 shows the Servo control block diagram. The position loop, the speed loop and the torque loop are cascade structures, corresponding to the position control mode, the speed control mode and the torque control mode respectively.

NOTE: only the basic tuning parameters during the tuning are shown in the figure.

9.1.3 Tuning Process

The Drive provides a variety of tuning methods, you can adjust the device according to the process shown in Figure 9-3, in order to obtain the desired Servo performance.

Start Perform the Tuning-Less function Response acceptable No Perform Load Inertia Identification function Perform the One-Parameter Auto-Tuning function End Results acceptable No Use the Auto-Tuning/Manual-Tuning Tools Results acceptable No Perform the Manual Tuning function

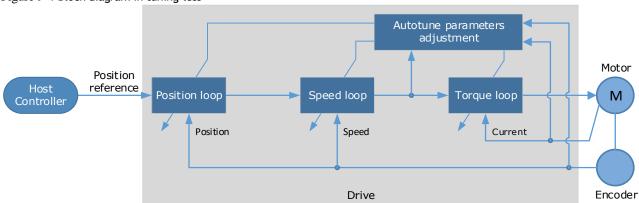
Figure 9-3 Tuning Process

It is necessary to perform the tuning operation again if the Motor had been disassembled or the load device had been replaced.

9.1.4 Precautions Before Tuning

- Before performing the tuning operation, make sure the limit function is available.
- Before performing the tuning operation, make sure that an emergency stop can be performed at any time.
- Before performing the tuning operation, you shall set the torque limit according to actual condition.
- Never touch the moving parts during the tuning operation.

9.2 Tuning Modes


9.2.1 Tuning-Less

Function Description

The tuning-less performs auto-tuning to obtain a stable response regardless of the type of machine or changes in the load. Autotuning is started when the Servo is turned ON.

The tuning-less function uses an Autotune parameters adjustment module that updates the position loop and speed loop parameters in real time based on the servo operating state (position, speed, current). Figure 9-4 shows the block diagram in tuning-less.

Figure 9-4 Block diagram in tuning-less

When using the tuning-less function, the following parameters are automatically adjusted.

Parameter	Adjustment method
Speed Loop Gain	Auto-tuning
Speed Loop Integral Time	Auto-tuning
Position Loop Gain	Auto-tuning
Torque Command Filter Time	Auto-tuning
Load Inertia Percentage	Auto-tuning

NOTE: The parameters will not change automatically in tuning-less function.

Applicated Case

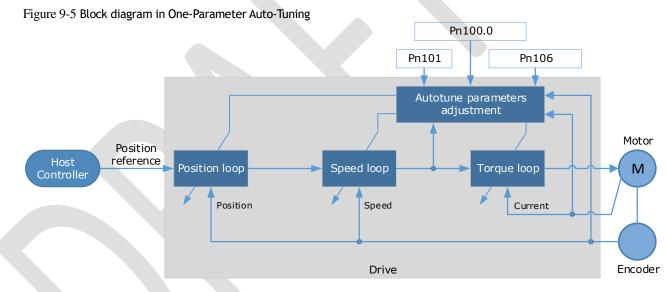
- Applied for that no more than 30 times the load moment of inertia.
- Applied for any rotation speed.

Relevant Parameters

Parameter	Setting	Meaning	When Enabled	Classification
Pn100.0	1 [Default]	Set the Tuning Mode as Tuningless.	After restart	Function

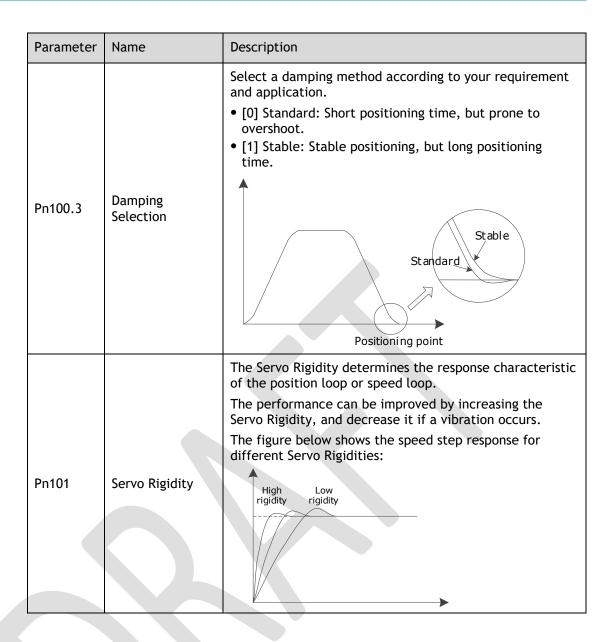
Application Restrictions

The following functions or applications are not available in the Tuning-less function:


- · Gain switch is disabled.
- P/PI Switch is disabled.
- Speed feedback by using observed speed is disabled.
- Load Torque Compensation is disabled.
- Model Following Control Function is disabled.

9.2.2 One-Parameter Auto-Tuning

Function Description


This tuning function is similar to the tuning-less function, using an Autotune parameters adjustment module that updates the position loop and speed loop parameters in real time based on the servo operating state (position, speed, current).

Only the parameter Pn101 (Servo Rigidity) needs to set in One-Parameter Auto-Tuning function, and Figure 9-5 shows the block diagram in One-Parameter Auto-Tuning.

Before performing One-Parameter Auto-Tuning, you need to manually set the following parameters:

Parameter	Name	Description
	Load Inertia	Properly setting the Load Inertia Percentage is a prerequisite for the One-Parameter Auto-Tuning to obtain a better Servo performance.
Pn106	Percentage	You can calculate the load inertia percentage (difficult and complex) by yourself, or you can get it by the utility function Fn009 or by ESView V4, certainly, you can directly modify the parameters by the host controller.

When using One-Parameter Auto-Tuning function, the following parameters are automatically adjusted.

Parameter	Adjustment method
Speed Loop Gain	Auto-tuning
Speed Loop Integral Time	Auto-tuning
Position Loop Gain	Auto-tuning
Torque Command Filter Time	Auto-tuning

NOTE: The parameters will not change automatically in tuning-less function.

Compared to Tuning-less, there are some features below in One-Parameter Auto-Tuning:

- Tuning based on a proper load inertia percentage can get a better servo performance.
- The setting of Servo Rigidity can be applied to more operating conditions.

Applicated Case

• Applied for that more than 50 times the load moment of inertia.

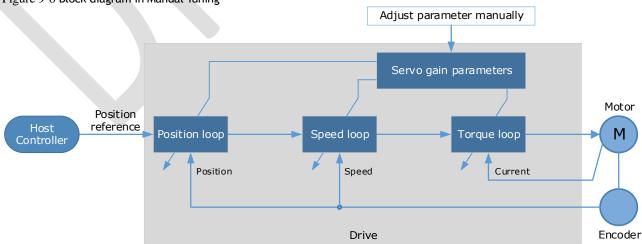
• Applied for any rotation speed.

Relevant Parameters

Parameter	Setting	Meaning	When Enabled	Classification
Pn100.0	3	Set the Tuning Mode as One- Parameter Auto-Tuning.		
Pn100.3	0	Set the damping method in One- Parameter Auto-Tuning as Standard.	After restart Function	
	1	Set the damping method in One-Parameter Auto-Tuning as Stable.		
Pn101	-	Servo Rigidity	Immediately	Adjustment
Pn106	_	Load Inertia Percentage	Immediately	Adjustment

Application Restrictions

The following functions or applications are not available in One-Parameter Auto-Tuning function:


- Gain switch is disabled.
- Model Following Control Function is disabled.

9.2.3 Manual Tuning

Function Description

In the Manual Tuning, you need to manually adjust the gain parameters without using the autotune parameter adjustment module, until the Servo get the desired performance. Figure 9-6 shows the block diagram in Manual Tuning.

Figure 9-6 Block diagram in Manual Tuning

It is necessary to adjust the three-loop control parameters of the Servo from the inside out, that is, the adjustment sequence is $\overline{\text{Torque loop}} \to \underline{\text{Speed loop}} \to \underline{\text{Position loop}}$. In addition, in order to meet the stability, the bandwidth setting should be the largest in the torque loop, the speed loop is the second, and the position loop is the smallest.

The following parameters need to be adjusted in each loop when performing Manual Tuning.

- Torque loop (Torque Control Mode)
 - Torque Reference Filter Time (Tf):

The torque reference filter filters the torque reference to remove the high frequency band, which can effectively reduce the torque ripple of the Motor output, eliminate signal noise and reduce the temperature rise of the Motor.

The larger the Torque Reference Filter Time, the better the filtering effect on the torque reference. However, the greater the phase lag, and the slower the torque response. Therefore, a smaller acceptable value should be set to obtain a larger torque loop bandwidth in the actual tuning.

- Speed loop (Speed Control Mode)
 - Relevant parameter in torque loop (Tf)
 - Load Inertia Percentage (JL)

Properly setting the Load Inertia Percentage is a prerequisite for the tuning to obtain a better Servo performance.

You can calculate the load inertia percentage (difficult and complex) by yourself, or you can get it by the utility function Fn009 or by ESView V4, certainly, you can directly modify the parameters by the host controller.

Speed Loop Gain (Kv), Speed Loop Integral Time (Ti)

Table 9-2 Adjustment example in speed loop

The speed loop is controlled using a Proportional-Integral Controller that contains Speed Loop Gain and Speed Loop Integral Time. Both of them determine the speed loop bandwidth and anti-disturbance performance of the Servo.

In general, if you can increase the setting of the Speed Loop Gain, the speed loop bandwidth will be increased and the anti-load disturbance performance will be better. And, if you can decrease the setting of the Speed Loop Integral Time, the integral action will be stronger, the speed loop bandwidth will be increased, and the anti-load disturbance performance will be better. In addition, the integral action may reduce the steady-state error to zero.

Table 9-2 lists several commonly used adjustment methods based on the characteristics of the speed step response.

Response Curve

Description

Adjustment method

Properly decrease the Speed Loop Gain or increase the Speed Loop Integral Time.

Speed loop damping ratio is low

Properly increase the Speed Loop Integral Time.

Response Curve	Description	Adjustment method
•	Speed loop bandwidth is low	Properly increase the Speed Loop Gain or decrease the Speed Loop Integral Time.

It is recommended to increase the Speed Loop Gain and decrease the Speed Loop Integral Time to obtain a larger speed loop bandwidth.

- Position loop (Position Control Mode)
 - Relevant parameters in speed loop (Kv, Ti, Tf, and JL)
 - Position Loop Gain (Kp)

The position loop is controlled using a Proportional Controller that only contains the Position Loop Gain. This parameter determines the position loop bandwidth. If you increase the Position Loop Gain, the position loop bandwidth will be increased and the anti-load disturbance performance will be better. However, overshooting and vibration in the position reference may be occurred.

It is recommended to set the Position Loop Gain to a quarter of the Speed Loop Gain, and make appropriate adjustments based on this.

Applicated Case

- Applied for that more than 50 times the load moment of inertia.
- Applied for any rotation speed.

Relevant Parameters

Parameter	Setting	Meaning	When Enabled	Classification
Pn100.0	5 [Default]	Set the Tuning Mode as Manual tuning.	After restart	Function
Pn102/Pn107	-	Speed Loop Gain	Immediately	Adjustment
Pn103/Pn108	-	Speed Loop Integral Time	Immediately	Adjustment
Pn104/Pn109	-	Position Loop Gain	Immediately	Adjustment
Pn105/Pn110	-	Torque Command Filter Time	Immediately	Adjustment
Pn106		Load Inertia Percentage	Immediately	Adjustment

NOTE: the settings of Pn107 to Pn110 are taken effect after the gain is switched.

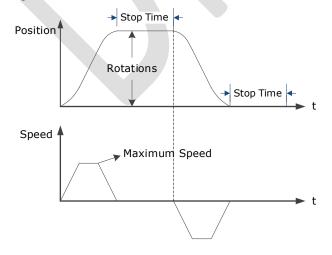
9.3 Tuning Tools

There is an Auto-Tuning Tool and a Manual Tuning Tool in Tuning tools. When using a tuning tool, the Drive will execute the position references generated internally, Figure 9-7 shows the block diagram in using a tuning tool.

Figure 9-7 Block diagram in using a tuning tool Settings Load Inertia Percentage Reference Internal adjustment Motor Positon loop Speed loop Torque loop M Positon reference Position Speed Current Drive Encoder

The reference generator plans an appropriate position reference according to the settings of relevant parameter.

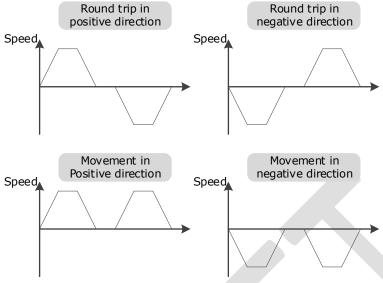
Since the limit function is unavailable when using the tuning tools, please make sure that the movable parts have sufficient travel in the planned motion track.


9.3.2 Auto-Tuning Tool

Function Description

With the Auto-Tuning Tool, the reference generator can plan the position curve and generate a position reference as inputs to the position loop.

There are two operation patterns (POSO and POS1), you can set their relevant parameters respectively. Figure 9-8 shows an example of position-speed timing diagram in PJOG operation.


Figure 9-8 Position-speed timing diagram

The Drive will operator the Motor repeatedly according to the parameter settings of the two operation patterns until the tuning is completed. You can set the parameters Pn164 and Pn168

to a negative value for reversing the Motor, so that there are four ways of the operation in the program jogging, as is shown in Figure 9-9.

Figure 9-9 Operation by using Auto-Tuning Tool

You shall set the Rotations (Pn164 and Pn168) and Max Speed (Pn165 and Pn169) to a proper value. If the Rotations is set too small or the Max Speed is set too large, it is possible that the maximum speed set cannot be reached. In this case, it is necessary to increase the Rotations or decrease the Max Speed.

Use the Auto-Tuning Tool as shown in Figure 9-10.

Set parameters for reference generator

Check and confirm the safety of the motion

Use the Auto-Tuning Tool

Result of execution

Success

Faulure

Save

No

Execute again

Yes

No

Write
parameters

Figure 9-10 Auto-Tuning Tool flowchart

The following parameters are automatically adjusted when using the auto-tuning tool.

Parameter	Adjustment method	Write into
Speed Loop Gain	Auto-tuning	Pn102
Speed Loop Integral Time	Auto-tuning	Pn103
Position Loop Gain	Auto-tuning	Pn104
Torque Command Filter Time	Auto-tuning	Pn105

- The parameters cannot be changed automatically when using the Auto-Tuning Tool.
- You have to choose whether to save (write) the parameters into the Drive. If you choose to save, parameters will be changed, but they are only available for Manual Tuning function.

Applicated Case

- Applied for the high rigidity (up to 20 times load moment of inertia) equipment.
- Applied for the low rigidity (up to 10 times load moment of inertia) equipment.
- The number of revolutions is more than 1 rotation, and the rotation speed is higher than 100 rpm.

Relevant Parameters

Parameter	Setting	Description	When Enabled	Classification
Pn106	_	Load Inertia Percentage	Immediately	Adjustment
Pn164	_	Turns for PJOG0	Immediately	Adjustment
Pn165	_	Max Speed for PJOG0	Immediately	Adjustment
Pn167	_	Stop Time for PJOG0	Immediately	Adjustment
Pn168	_	Turns for PJOG1	Immediately	Adjustment
Pn169	_	Max Speed for PJOG1	Immediately	Adjustment
Pn171	_	Stop Time for PJOG1 Immediately		Adjustment

Application Restrictions

You can use the automatic vibration suppression function when using the auto-tuning tool.

The following functions or applications are not available when using Auto-Tuning Tool:

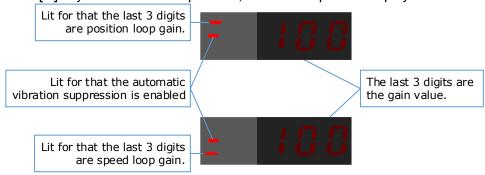
- Gain switch is disabled.
- Model Following Control Function is disabled.
- Notch Filter is disabled.
- Vibration Suppression is disabled.
- Load Oscillation Suppression is disabled.

The Auto-Tuning Tool is unavailable in fully-closed loop control.

Operation Procedure: Use the Panel Operator of the Drive

The following are the steps to use the Auto-tuning tool.

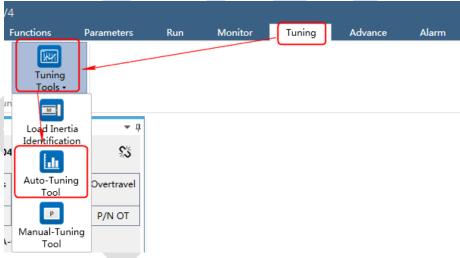
Step 1 Press [M] key several times to select the Utility Function Mode.


Step 2 Press [▲] key or [▼] key to select the function number Fn017.

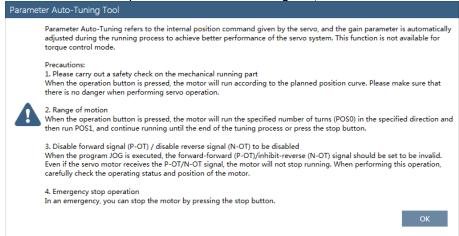
Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press [M] key to execute this operation, and Panel Operator display as below.

Step 5 When this operation has been completed, Panel Operator will display the result of execution.

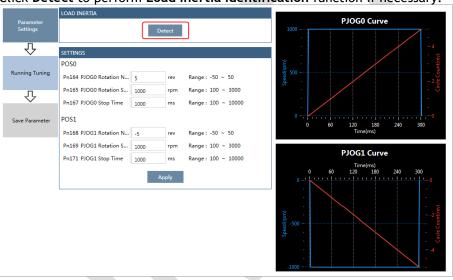

Step 6 Press [◀] key to return to the display of the Fn017.

----End


Operation Procedure: Use the ESView V4

By using the **Auto-Tuning Tool**, the Drive can automatically perform the round-trip (forward and reverse) operation to adjust for machine characteristics.

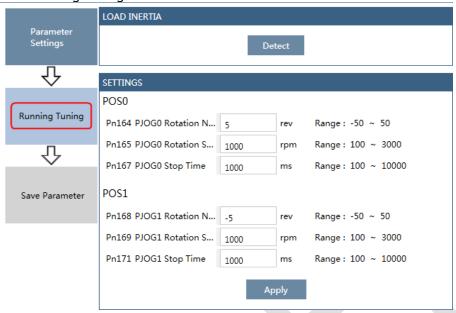
Step 1 Select Tuning \rightarrow Tuning Tools \rightarrow Auto-Tuning Tool in the Menu Bar of the ESView V4 main windows.



Step 2 Read and follow the precautions in the warning box, and then click OK.

Step 3 The Auto-Tuning Tool window will be displayed in Function Display Area.

Step 4 Click **Detect** to perform **Load Inertia Identification** function if necessary.

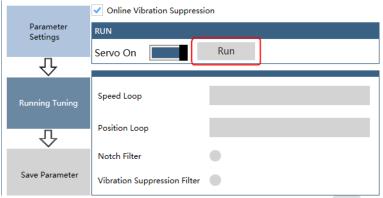

Step 5 Set the relevant parameters for the operation patterns POS0 and POS1.


- Rotation Number: Set the numbers of rotation the Motor will run in the operation pattern POS0 or POS1.
- Rotation Speed: Set the Motor running speed in the operation pattern POSO or POS1.

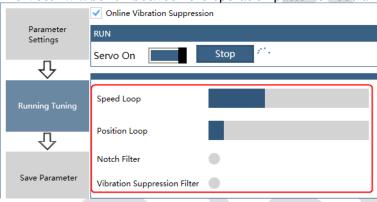
- **Stop Time**: Set the hold time when the Motor stops running in the operation pattern POSO or POS1, and then switches to the other operation pattern.
- Step 6 Click **Apply** to complete the settings.

Step 7 Click Running Tuning.

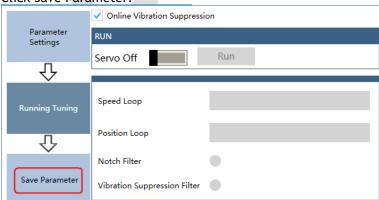
Step 8 The window will display the preparations before running the tuning.

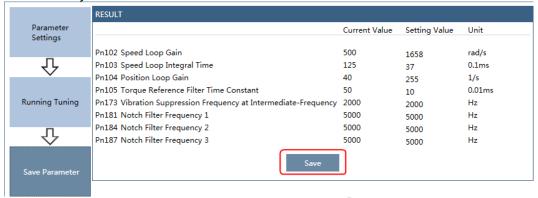


The setting will be written into the Drive automatically after you check or uncheck **Online Vibration Suppression** option.


Step 9 Click **Servo Off / Servo On** for supplying power to the Motor.

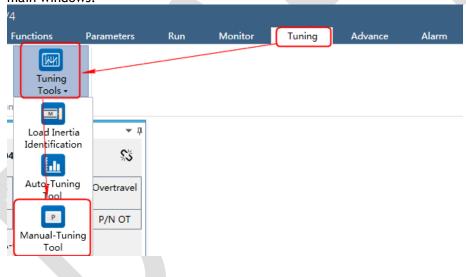
Step 10 Click Run.

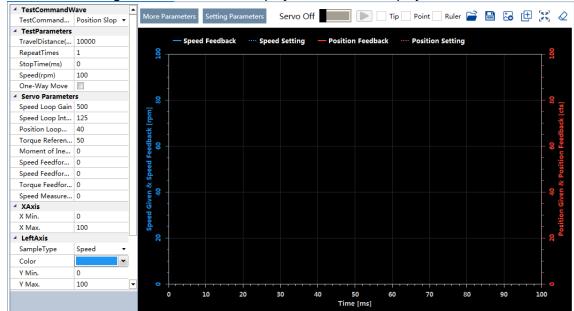

Step 11 The Motor will be run between the operation patterns POS0 and POS1.


Step 12 Click **OK** when the **Auto-Tuning Tool** function has been completed.

Step 13 Click Save Parameter.

Step 14 Check the **RESULT**, and click **Save**, the settings of parameters will be written into the Drive automatically.

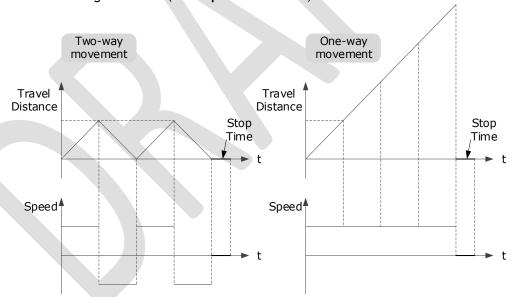



----End

9.3.3 Manual-Tuning Tool

By using the Manual-Tuning Tool, you will set the Servo gain parameters again and again according to the waveform graphics of the data (Speed Feedback, Speed Setting, Position Feedback and Position Setting), as far as the performance of the servo meets the requirements.

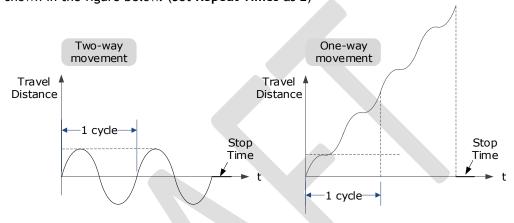
Step 1 Select Tuning \rightarrow Tuning Tools \rightarrow Manual-Tuning Tool in the Menu Bar of the ESView V4 main windows.



Step 2 The Manual-Tuning Tool window will be displayed in Function Display Area.

Step 3 Set the necessary parameters of the **Test Command**.

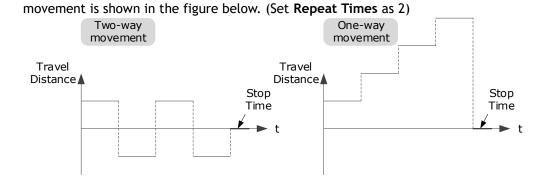
Choose Test Command Wave as Position Slope, the Drive will operate in position control
method, and the trajectory of the Motor in Two-way movement and One-way movement is
shown in the figure below. (Set Repeat Times as 2)



The relevant parameters in the **Position Slope** are shown in the table below.

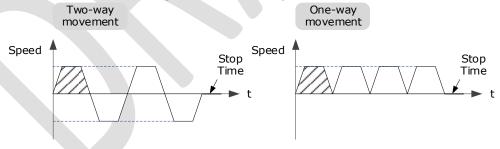
Parameter	Range	Description
Travel Distance	-9 999 999 to 9 999 999	The travel distance the Motor moves in one command. The positive and negative values indicate the direction of rotation.
Repeat Times	1 to 10	The number of times the command was executed.

Parameter	Range	Description
Stop Time	0 to 32767	Set the hold time when the Motor stops running.
Speed	0 to 3000	The speed of the Motor when the command is executed.
One-Way Move	-	Check this option indicates that the Motor is running in One-way movement.


• Choose **Test Command Wave** as **Position Sine**, the Drive will operate in position control method, and the trajectory of the Motor in Two-way movement and One-way movement is shown in the figure below. (Set **Repeat Times** as 2)

The relevant parameters in the Position Sine are shown in the table below.

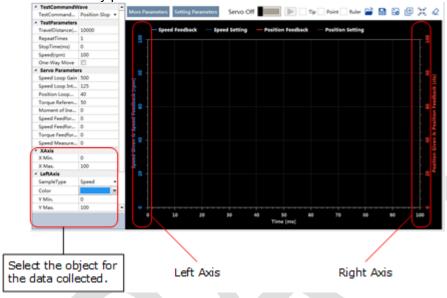
Parameter	Range	Description
Travel Distance	-9 999 999 to 9 999 999	The travel distances the Motor moves in one command. The positive and negative values indicate the direction of rotation.
Repeat Times	1 to 10	The number of times the command was executed.
Stop Time	0 to 32767	Set the hold time when the Motor stops running.
Frequency	1 to 50	The number of cycles the command completes in 1 second.
One-Way Move	_	Check this option indicates that the Motor is running in One-way movement.


• Choose **Test Command Wave** as **Position Stepwise**, the Drive will operate in position control method, and the trajectory of the Motor in Two-way movement and One-way

The relevant parameters in the **Position Stepwise** are shown in the table below.

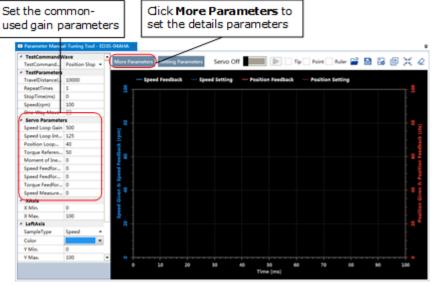
Parameter	Range	Description
Travel Distance	-9 999 999 to 9 999 999	The travel distances the Motor moves in one command. The positive and negative values indicate
		the direction of rotation.
Repeat Times	1 to 10	The number of times the command was executed.
Stop Time	0 to 32767	Set the hold time when the Motor stops running.
Stepwise Time	1 to 32767	The time to execute one command.
One-Way Move	-	Check this option indicates that the Motor is running in One-way movement.

• Choose **Test Command Wave** as **Speed Trapezoid**, the Drive will operate in position control method, and the trajectory of the Motor in Two-way movement and One-way movement is shown in the figure below. (Set **Repeat Times** as 2)



The relevant parameters in the Speed Trapezoid are shown in the table below.

Parameter	Range	Description
Traval Distance	-9 999 999 to 9 999	The travel distances the Motor moves in one command.
Travel Distance	999	The positive and negative values indicate the direction of rotation.
Repeat Times	1 to 10	The number of times the command was executed.
Stop Time	0 to 32767	Set the hold time when the Motor stops running.


Parameter	Range	Description
Speed	0 to 3000	The speed of the Motor when the command is executed.
Acceleration	1 to 65535	The Acceleration of the Motor when the command is executed.
One-Way Move	_	Check this option indicates that the Motor is running in One-way movement.

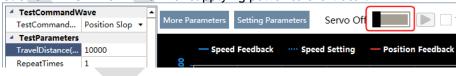
Step 4 Set the necessary parameters for the data collected.

- X Axis: Indicates Times.
- Left Axis: Select **Sample Type** as **Speed** or **Position**. This selection will affect the **Sample Type** of the Right Axis.
- Right Axis: Select Sample Type as None, Speed, Position, or Offset.
 The setting Offset indicates the deviation of the sample type (speed or position) selected by the left axis.

Step 5 Set the necessary parameters for the Servo gain.

The parameters that may be used are shown in Table 9-3.

Table 9-3 The parameters that may be used

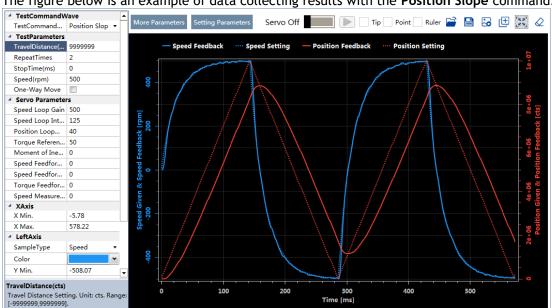

Туре	Parameter	Name	Range	Unit	Default	When Enabled
	Pn102	Speed Loop Gain	1 to 10000	rad/s	500	Immediately
	Pn103	Speed Loop Integral Time	1 to 5000	0.1ms	125	Immediately
	Pn104	Position Loop Gain	0 to 1000	1/s	40	Immediately
	Pn105	Torque Command Filter Time	0 to 2500	0.01ms	50	Immediately
	Pn106	Load Inertia Percentage	0 to 9999	%	0	Immediately
	Pn107	Second Speed Loop Gain	1 to 10000	rad/s	250	Immediately
	Pn108	Second Speed Loop Integral Time	1 to 5000	0.1ms	200	Immediately
	Pn109	Second Position Loop Gain	0 to 1000	1/s	40	Immediately
Gain	Pn110	Second Torque Reference Filter Time	0 to 2500	0.01ms	100	Immediately
Cum	Pn116	P/PI Switch Mode	0 to 4	-	0	After restart
	Pn117	Torque Reference Threshold for P/PI Switch	0 to 300	200	%	Immediately
	Pn118	Deviation Counter Threshold for P/PI Switch	0 to 10000	0	1 pulse	Immediately
	Pn119	Acceleration Reference Threshold for P/PI Switch	0 to 3000	0	10 rpm/s	Immediately
	Pn120	Speed Reference Threshold for P/PI Switch	0 to 10000	rpm	0	Immediately
	Pn121	Gain Switch Mode	0 to 10	_	0	After restart
	Pn122	Delay Time for Gain Switch	0 to 20000	0.1 ms	0	Immediately

Туре	Parameter	Name	Range	Unit	Default	When Enabled
	Pn123	Threshold for Gain Switch	0 to 20000	-	0	Immediately
	Pn124	Speed Threshold for Gain Switch	0 to 2000	rpm	0	Immediately
	Pn125	Ramp Time for Position Loop Gain Switch	0 to 20000	0.1ms	0	Immediately
	Pn126	Hysteresis for Gain Switch	0 to 20000	-	0	Immediately
	Pn005	Application Function Selections 5	00d0 to 33d3	-	00d0	
	Pn005.0	Internal Torque Feedforward Method	0 to 3	-	0	
	Pn005.1	Local Control Method	d to d	-	d	After restart
	Pn005.2	Torque Feedforward Method	0 to 3		0	
	Pn005.3	Speed Feedforward Method	0 to 3	-	0	
	Pn112	Speed Feedforward	0 to 100	%	0	Immediately
Feedforward and Vibration Suppression	Pn113	Speed Feedforward Filter Time	0 to 640	0.1ms	0	Immediately
	Pn114	Torque Feedforward	0 to 100	%	0	Immediately
	Pn115	Torque Feedforward Filter Time	0 to 640	0.1ms	0	Immediately
	Pn150	Model Following Control Function	0000 to 0002	-	0000	Afternation
	Pn150.0	Model Following Control Selection	0 to 2	-	0	After restart
	Pn151	Model Following Control Gain	10 to 1000	1/s	50	Immediately
	Pn152	Model Following Control Gain Correction	20 to 500	%	100	Immediately

Туре	Parameter	Name	Range	Unit	Default	When Enabled
	Pn153	Model Following Control Speed Feedforward	0 to 200	%	100	Immediately
	Pn154	Model Following Control Torque Feedforward	0 to 200	%	100	Immediately
	Pn155	Load Oscillation Frequency	50 to 500	0.1Hz	100	Immediately
	Pn156	Filter Time for Load Oscillation Suppression	2 to 500	0.1ms	10	Immediately
	Pn157	Limit for Load Oscillation Suppression	0 to 1000	rpm	100	Immediately
	Pn173	Frequency of Vibration Suppression Filter	100 to 2000	Hz	2000	Immediately
	Pn174	Adjust Bandwidth of Vibration Suppression Filter	1 to 100		30	Immediately
	Pn175	Vibration Suppression	0 to 500	-	100	Immediately
	Pn176	Lowpass Filter Time for Vibration Suppression	0 to 50	0.1ms	0	Immediately
	Pn177	Highpass Filter Time for Vibration Suppression	0 to 1000	0.1ms	1000	Immediately
	Pn178	Damping of Vibration Suppression Filter	0 to 500	_	100	Immediately
	Pn181	Frequency of Notch Filter 1	50 to 5000	Hz	5000	Immediately
	Pn182	Depth of Notch Filter 1	0 to 23	-	0	Immediately
	Pn183	Width of Notch Filter 1	0 to 15	_	2	Immediately
	Pn184	Frequency of Notch Filter 2	50 to 5000	Hz	5000	Immediately
	Pn185	Depth of Notch Filter 2	0 to 23	_	0	Immediately

Туре	Parameter	Name	Range	Unit	Default	When Enabled
	Pn186	Width of Notch Filter 2	0 to 15	_	2	Immediately
	Pn187	Frequency of Notch Filter 3	50 to 5000	Hz	5000	Immediately
	Pn188	Depth of Notch Filter 3	0 to 23	_	0	Immediately
	Pn189	Width of Notch Filter 3	0 to 15	_	2	Immediately
	Pn127	Low Speed Filter	0 to 100	1cycle	0	Immediately
	Pn130	Coulomb Friction Compensation	0 to 3000	0.1%Tn	0	Immediately
	Pn131	Speed Dead Band for Coulomb Friction Compensation	0 to 100	rpm	0	Immediately
Others	Pn132	Viscous Friction Compensation	0 to 1000	0.1%Tn/1000rpm	0	Immediately
	Pn135	Encoder Speed Filter Time	0 to 30000	0.01ms	4	Immediately
	Pn160	Load Torque Compensation	0 to 100	%	0	Immediately
	Pn161	Load Torque Observer Gain	0 to 1000	Hz	200	Immediately
	Pn162	Feedback Speed Selection	0 to 1)_	0	After restart

Step 6 Click Servo Off / Servo On for supplying power to the Motor.



Step 7 Click to start using Manual-Tuning Tool.

The Motor will run according to the set parameters and perform the data collecting.

Step 8 When the Manual-Tuning Tool function has been completed, the waveform graphics of the data result is displayed in the window.

The figure below is an example of data collecting results with the **Position Slope** command.

Step 9 Repeat setting the parameters and perform the data collecting until result meets the requirements.

Step 10 Click **Setting Parameters** after confirming that the results have reached the desired performance, and the parameters will be written into the Drive.

----End

9.4 Feedback Speed Selection

The speed feedback from the encoder is the calculate result that the Drive read the position value from the encoder and differentiate time.

There is a speed observer inside the Drive for detecting the speed of the Motor in real time. The detected speed can be used for host controller monitoring or as a speed feedback for the speed loop.

In the case of low speed or low encoder resolution, the method of position-to-time differentiation introduces large noise. You can set Pn162=1 to use observed speed as the feedback speed.

In addition, you can increase the setting of Pn161 for making the observed speed closer to the actual speed, but overshooting will be likely to occur.

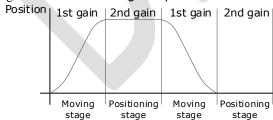
Parameter	Setting	Meaning	When Enabled	Classification
Pn161	_	Load Torque Observer Gain	Immediately	Adjustment
Pn162	0 [Default]	Use encoder speed as the feedback speed.	After restart	Function
PITIOZ	1	Use observed speed as the feedback speed.	After restart	

If you keep the default setting of Pn162, you can use a low-pass filter to eliminate the noise and high-frequency band, in this case, you shall set Encoder Speed Filter Time (Pn135) as a proper value.

Increase the setting of Pn135, the filtering effect will be better, and the encoder feedback speed will be smooth, but the phase lag of the speed feedback is also larger, which can reduce the servo performance.

Parameter	Setting	Meaning	When Enabled	Classification
Pn135	_	Encoder Speed Filter Time	Immediately	Adjustment

9.5 Additional Adjustment Functions

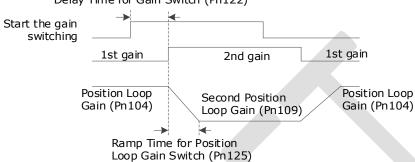

9.5.1 Gain Switching

Function Description

The gain switching function can be used for the manual tuning. It is required to switch from 1st gain parameters to 2nd gain parameters for the Servo operation in a specific stage, so that the overall performance of the Servo system can reach the desired performance.

Take Figure 9-11 as an example, the position stage focuses on the performances such as position ripples and positional rigidity, while the moving stage focuses on the performance such as following error. In this case, two switchable groups of gain parameters are required to meet the Servo performance.

Figure 9-11 Gain switching example


The parameters of the first gain and the second gain are as follows.

Parameter	First Gain	Second Gain
Speed Loop Gain	Pn102	Pn107
Speed Loop Integral Time	Pn103	Pn108
Position Loop Gain	Pn104	Pn109

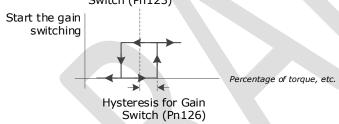
Parameter	First Gain	Second Gain
Torque Command Filter Time	Pn105	Pn110

The gain switching function includes two settings: one is the conditions for starting the gain switching and the other is which process to start the gain switching. Figure 9-12 shows a timing diagram for the gain switching.

Figure 9-12 Gain switching timing diagram
Delay Time for Gain Switch (Pn122)

Conditions for the Gain Switching

The Drive uses the first group of gain parameters by default. You can set the parameter Pn121 (Gain Switch Mode) as a desired value, so that the second group of gain parameters are used when the condition set in Pn121 are met.


Parameter	Setting	Meaning	When Enabled	Classification
	0 [Default]	Fixed to first group gains.		
	1	Use external signal (G-SEL) as the condition.		
	2	Use torque reference as the condition (threshold setting: Pn117).		
	3	Use position deviation counter as the condition (threshold setting: Pn118).		
Pn121	4	Use acceleration as the condition (threshold setting: Pn119).	After restart	Function
	5	Use speed reference as the condition (threshold setting: Pn120).		
	6	Use position reference as the condition (threshold setting: Pn123).		
	7	Use actual speed as the condition (threshold setting: Pn124).		

Parameter	Setting	Meaning	When Enabled	Classification
	8	Use position reference (Pn123) and actual speed (Pn124) as the condition.		
	9	Fixed to second group gains.		
	10	Use positioning completed flag as the condition.		

- Set Pn121 to 0 (Fixed to first group gains), indicating that the first group of gain parameters is always used.
- Set Pn121 to 1 (Use external signal (G-SEL) as the condition) or 10 (Use positioning completed flag as the condition), indicating that switch to second group of gain parameters when the G-SEL signal is active or positioning completed, otherwise the first group of gain parameters is used.
- Set Pn121 as 2 to 7, indicating that switch to second group of gain parameters when the switching condition exceeds the set threshold value, otherwise the first group of gain parameters is used.

In this case, you can set a proper Hysteresis for Gain Switch (Pn126) to avoid the error between input and output, and Figure 9-13 shows the diagram for this setting.

Figure 9-13 Hysteresis for Gain Switch diagram Threshold for Gain Switch (Pn123)

- Set Pn121 to 8 (Use position reference and actual speed as the condition), indicating that there are two conditions to be met when switching to the second gain:
 - Condition 1: Hysteresis switching based on position reference, you shall set a proper Threshold value for Gain Switch (Pn123) and Hysteresis for Gain Switch (Pn126). This condition is met when the output exceeds the sum of Pn123 and Pn126.
 - Condition 2: Switch based on actual speed judgment, and you shall set a proper Speed Threshold for Gain Switch (Pn124).

This condition is met when the actual speed exceeds the threshold value.

Both condition 1 and condition 2 are met, switching to second group of gain parameters, otherwise the first group of gain parameters is used.

 Set Pn121 to 9 (Fixed to second group gains), indicating that the second group of gain parameters is always used.

Relevant Parameters

Parameter	Setting	Meaning	When Enabled	Classification
Pn122	-	Delay Time for Gain Switch	Immediately	Adjustment
Pn123	_	Threshold for Gain Switch	Immediately	Adjustment
Pn124	_	Speed Threshold for Gain Switch	Immediately	Adjustment

Parameter	Setting	Meaning	When Enabled	Classification
Pn125	-	Ramp Time for Position Loop Gain Switch	Immediately	Adjustment
Pn126	_	Hysteresis for Gain Switch	Immediately	Adjustment

9.5.2 P / PI Switching

The Drive uses the Proportional-Integral Controller by default to adjust the speed loop. You can set Pn116 (P/PI Switch Mode) for switching to the Proportional Controller when the set condition is met.

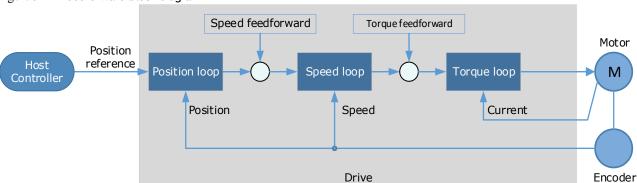
Parameter	Setting	Meaning	When Enabled	Classification
Pn116	0 [Default]	Use torque reference as the condition (threshold setting: Pn117).		
	Use position deviation counter as the condition (threshold setting: Pn118).			
	2	Use acceleration reference as the condition (threshold setting: Pn119)	After restart	Function
	3	Use the speed reference as the condition (threshold setting: Pn120).		
	4	Fixed to PI Control.	PI Control.	

- Set Pn116 to 4 (Fixed to PI Control), indicating that the Proportional-Integral Controller is always used.
- Set Pn116 as 0 to 3, indicating that switch to Proportional Controller when the switching condition exceeds the set threshold value, otherwise the Proportional-Integral Controller is used.

The relevant threshold parameters are shown in the table below.

Parameter	Setting	Meaning	When Enabled	Classification
Pn117	-	Torque Reference Threshold for P/PI Switch	Immediately	Adjustment
Pn118	_	Deviation Counter Threshold for P/PI Switch	Immediately	Adjustment
Pn119	_	Acceleration Reference Threshold for P/PI Switch	Immediately	Adjustment
Pn120	_	Speed Reference Threshold for P/PI Switch	Immediately	Adjustment

Take the default settings as an example, the default setting of Pn116 is 0 (Use torque reference as the condition), and the default Torque Reference Threshold for P/PI Switch (Pn117) is 200, in this case, when the torque reference percentage exceeds 200, the speed loop adjustment will be switched from PI control to P control, and then if the torque reference percentage is not more than 200, the speed loop adjustment is switched to PI control.


9.5.3 Feedforward

Feedforward includes speed feedforward and torque feedforward.

- Speed feedforward can improve position response and reduce position following error
- Torque feedforward can improve the speed response and reduce the speed following error

Figure 9-14 shows the block diagram in the feedforward function.

Figure 9-14 Feedforward block diagram

In general, the differential of the position reference is used as the feedforward, you can also set the feed forward by the controller or other application functions.

You can set Pn005 to select the method for the feedforward.

Parameter	Setting Meaning		When Enabled	Classification
Pn005.3	0 [Default]	Use the internal speed feedforward.		Function
	1	Use the model following control speed feedforward, which is available when Model Following Control Selection (Pn150.0) is enabled.		
	2	Use the speed feedforward set by the controller, which is available in the bus control and set by the object 60B1h.		
	3	Use the speed feedforward generated by Cubic interpolation algorithm, which is available when the object 60C0h is set to Cubic interpolation algorithm in bus control.	After restart	
	0 [Default]	Use the internal torque feedforward.		
	1	Use the model following control torque feedforward, which is available when Model Following Control Selection (Pn150.0) is enabled.		

Parameter	Setting	Meaning	When Enabled	Classification
	Use the torque feedforward so by the controller, which is available in the bus control a set by the object 60B2h.			
	3	Use the torque feedforward generated by Cubic interpolation algorithm, which is available when the object 60C0h is set to Cubic interpolation algorithm in bus control.		

Internal Feedforward

In order to reduce the overshoot caused by the feedforward when the setting of Pn005.3 or Pn005.2 is 0, it is necessary to set Speed Feedforward (Pn112) or Torque Feedforward (Pn114) to adjust the feedforward compensation value.

- Internal Speed Feedforward = Differential of position reference × Speed Feedforward
- Internal Torque Feedforward = Differential of speed reference × Load Inertia Percentage × Torque Feedforward

In addition, it is required to filter the noise caused by the differential for the feedforward. You can increase the Filter Time for the feedforward, the noise can be filtered better, but overshooting may be occurred.

In the case of high rotation speed, you shall set Pn005.0 to 2 and Pn005.2=0.

Parameter	Setting	Meaning	When Enabled	Classification
Pn005.0		Use the general internal torque feedforward.	After restart Function	
F11005.0	2	Use the high-speed internal torque feedforward.	high-speed internal torque	
Pn112	I	Speed Feedforward	Immediately	Adjustment
Pn113	-	Speed Feedforward Filter Time	Immediately	Adjustment
Pn114	-	Torque Feedforward	Immediately	Adjustment
Pn115	-	Torque Feedforward Filter Time	Immediately	Adjustment

Model Following Control Feedforward

You shall confirm and set that the Model Following Control function has been enabled (Pn150.0=1 or 2), and then set Pn005.3=1(Use the model following control speed) or Pn005.2=1 (Use the model following control torque feedforward).

Feedforward Set by Controller

The setting of Pn005.3=2 (Use the speed feedforward set by the controller) or Pn005.2=2 (Use the torque feedforward set by the controller) is only available for EtherCAT Communication.

The relevant objects are 60B1h and 60B2h.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60B1h	0	Velocity Offset	INT32	RW	Yes	-2147483648 to 2147483647
60B2h	0	Torque Offset	INT16	RW	Yes	-32768 to 32767

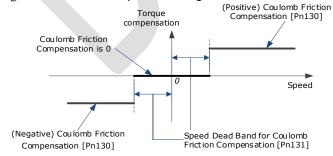
Feedforward calculated by Cubic Interpolation

The setting of Pn005.3=3 (Use the speed feedforward generated by Cubic interpolation algorithm) or Pn005.2=3 (Use the torque feedforward generated by Cubic interpolation algorithm) is only available for EtherCAT Communication.

The relevant object is 60C0h.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60C0h	0	Interpolation sub mode select	INT16	RW	No	-1

9.5.4 Friction Compensation


The load friction must exist in the transmission system. However, severe load friction may cause low-speed crawling, waveform distortion at speed zero-crossing, positioning lag, etc., which can affect the dynamic and static performance of the Servo system.

The friction compensation function is that the Drive compensates the load friction by using the relevant parameter settings, which can be used for applications with frequently forward and reverse motion, and high speed-stability requirements.

Friction compensation is used to compensate for viscous friction fluctuations and coulomb friction fluctuations.

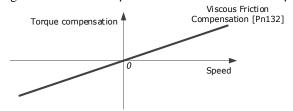
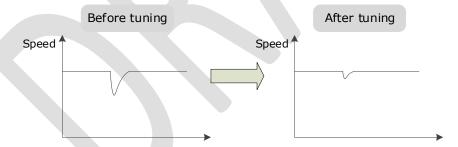

You can set Coulomb Friction Compensation (Pn130) manually, and its direction is consistent with the direction of rotation speed. In addition, it is necessary to set Speed Dead Band for Coulomb Friction Compensation (Pn131) to avoid the Motor changing the compensation direction frequently near zero speed, in this case, the Friction Compensation in the Dead Band is 0, as is shown in Figure 9-15.

Figure 9-15 Friction compensation diagram

The viscous friction compensation is a linear relationship with the Motor speed, as is shown in Figure 9-16. You can set the Viscous Friction Compensation by Pn132.

Figure 9-16 Relationship between viscous friction and speed


Parameter	Setting	Meaning	When Enabled	Classification
Pn130	_	Coulomb Friction Compensation	Immediately	Adjustment
Pn131	_	Speed Dead Band for Coulomb Friction Compensation Immediately		Adjustment
Pn132	_	Viscous Friction Compensation	Immediately	Adjustment

9.5.5 Load Torque Compensation

If there is a sudden load torque during the operation of the Motor, the speed will decrease or the position will move. The continuously changing load torque will also cause the speed fluctuation or position jitter. In this case, it is generally necessary to improve the anti-load disturbance performance of the servo by tuning.

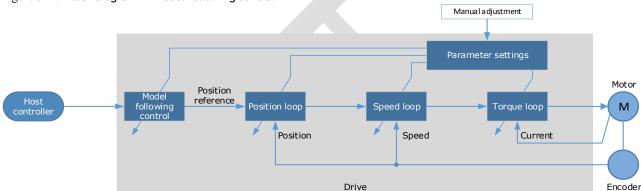
In the tuning process, the load torque compensation function can be used to improve the anti-load disturbance performance, considering that the reference response performance and the load disturbance resistance cannot be balanced.

As shown in the figure below, the speed drop is caused by a sudden load torque, and the load torque compensation function can be used to reduce the drop of the speed.

The load torque compensation function is to compensate the load torque compensation to the torque reference through the load torque observer.

To reduce the overshoot caused by load torque compensation, use the load disturbance compensation percentage to adjust the compensation value:

Load Torque Compensation = Load Torque Observer × Load Inertia Percentage (Pn160)


In addition, you can adjust the bandwidth of the load torque observer via Load Torque Observer Gain (Pn161). Increase the setting of Pn161 for making the observed torque closer to the actual torque, but overshooting will be likely to occur.

Parameter	Setting	Meaning	When Enabled	Classification
Pn160	_	Load Torque Compensation	Immediately	Adjustment
Pn161	_	Load Torque Observer Gain	Immediately	Adjustment

9.5.6 Model Following Control

The Model Following Control is outside of the position loop. In Model Following Control, new position references are generated based on the theoretical Motor control model, and relevant speed feedforward and torque feedforward are generated. Applying these controls to the actual control loop can significantly improve the response performance and positioning performance of the position control. Figure 9-17 shows the block diagram in model following control.

Figure 9-17 Block diagram in model following control

To use the Model Following Control function, set the following parameter.

Parameter	Setting	Meaning	When Enabled	Classification
Pn150.0	0 [Default]	Do not use Model Following Control.	After restart	Function
	1	Use the model following control.		
	2	Use the model following control and load oscillation suppression.		

To use the Model Following Control properly, you shall adjust the relevant parameters in the order of Torque Loop \rightarrow Speed Loop \rightarrow Position Loop \rightarrow Model Following Control.

For details on the relevant parameter of Torque Loop, Speed Loop and Position Loop, refers to the section 9.2.3 Manual Tuning. The relevant parameters of Model Following Control are as follows.

Parameter	Setting	Meaning	When Enabled	Classification
Pn151	_	Model Following Control Gain	Immediately	Adjustment
Pn152	_	Model Following Control Gain Correction	Immediately	Adjustment

The Model Following Control Gain (Pn151) determines the position response performance, and increase this setting can improve speed of response, but overshooting will be likely to occur.

The Model Following Control Gain Correction (Pn152) determines the damping ratio, and increase this setting can also increase the damping ratio.

The (speed/torque) feedforward in Model Following Control is a percentage factor that is used to adjust the output feedforward.

Parameter	Setting	Meaning	When Enabled	Classification
Pn153	_	Model Following Control Speed Feedforward	Immediately	Adjustment
Pn154	_	Model Following Control Torque Feedforward	Immediately	Adjustment

NOTE: only when Pn005.3=1 or Pn005.2=1, the settings of above parameter are available.

The following application restrictions apply to the Mode Following Control.

- Only applied for the Manual Tuning.
- Only applied for the Position Control Modes.
- It is unavailable in fully-closed loop control.

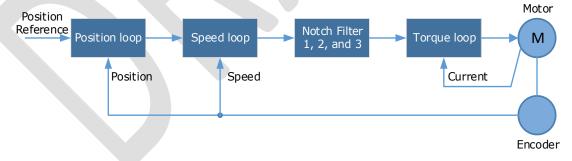
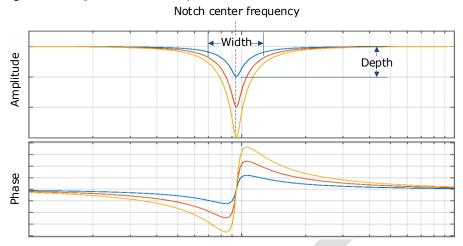
9.6 Vibration Suppression

9.6.1 Notch Filter

The notch filter is used to eliminate vibration caused by mechanical resonance.

There are three notch filters in the Drive, those who can used independently or in combination, Figure 9-18 shows the block diagram of using the notch filters.

Figure 9-18 Block diagram of using the notch filters

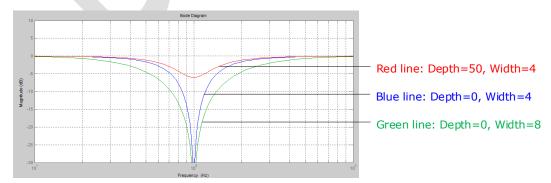

Figure 9-19 shows the relevant parameters for the notch filter. Since the notch filter can attenuate the signal at the notch frequency, if you set a proper frequency (Pn181, Pn184 or Pn187), depth (n182, Pn185 or Pn188) and width (n183, Pn186 or Pn189), the vibration signal in the torque reference can be filtered.

Figure 9-19 Diagram of notch filter parameters

Parameter	Setting	Meaning	When Enabled	Classification
Pn181	_	Frequency of Notch Filter 1	Immediately	Adjustment
Pn182	-	Depth of Notch Filter 1	Immediately	Adjustment
Pn183	-	Width of Notch Filter 1	Immediately	Adjustment
Pn184	-	Frequency of Notch Filter 2	Immediately	Adjustment
Pn185	ı	Depth of Notch Filter 2	Immediately	Adjustment
Pn186	-	Width of Notch Filter 2	Immediately	Adjustment
Pn187	-	Frequency of Notch Filter 3	Immediately	Adjustment
Pn188		Depth of Notch Filter 3	Immediately	Adjustment
Pn189	-	Width of Notch Filter 3	Immediately	Adjustment

- Set the frequency of notch filter to 5000, indicating the notch filter is unavailable.
- The setting range of the depth is from 0 to 23.
- The setting range of the width is from 0 to 15.

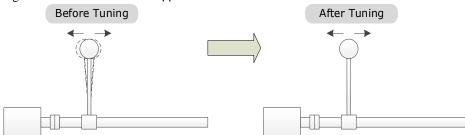
9.6.2 IF (Intermediate Frequency) Vibration Suppression

The IF vibration suppression filter is used to process the speed deviation and compensated to the torque reference. It is applied for the frequency range 100 Hz to 2000 Hz. Figure 9-20 shows the block diagram of using the IF vibration suppression filter.

Speed reference Speed loop Torque loop Motor

Figure 9-20 Block diagram of using the IF vibration suppression filter

- Pn173 determines the frequency center at which vibration suppression is to be performed.
- Pn174 determines the vibration suppression bandwidth of the filter, indicating the range of the adjustment filter near the center frequency. Increase this setting can increase the range of vibration suppression, but it will affect the phase of the frequency near the center.
- The highpass filter and the lowpass filter are respectively used to filter high frequency DC signals and low frequency DC signals.
- Pn178 determines the level of the final compensated IF vibration suppression.


Parameter	Setting	Meaning	When Enabled	Classification
Pn173	1	Frequency of Vibration Suppression Filter	Immediately	Adjustment
Pn174	1	Adjust Bandwidth of Vibration Suppression Filter	Immediately	Adjustment
Pn175	-	Vibration Suppression	Immediately	Adjustment
Pn176	-	Lowpass Filter Time for Vibration Suppression	Immediately	Adjustment
Pn177		Highpass Filter Time for Vibration Suppression	Immediately	Adjustment
Pn178	_	Damping of Vibration Suppression Filter	Immediately	Adjustment

NOTE: Set Pn173 to 2000, indicating the notch filter is unavailable.

9.6.3 Load Oscillation Suppression

Use the Load Oscillation Suppression function for suppressing low frequency jitter at the end of the load during position control, as is shown in Figure 9-21.

Figure 9-21 Load Oscillation Suppression

This function is based on the Model Following Control. According to the relationship between the load position and the Motor position in the Model Following Control, aiming at controlling the stability of the load position, and correcting the position reference, as well as the feedforward generated by the Model Following Control. Figure 9-22 shows the block diagram of using the Load Oscillation Suppression.

Figure 9-22 Block diagram of using the Load Oscillation Suppression

Parameter	Setting	Meaning	When Enabled	Classification
Pn150.0	2	Use the model following control and load oscillation suppression.	After restart	Function
Pn155	-	Load Oscillation Frequency	Immediately	Adjustment
Pn156	-	Filter Time for Load Oscillation Suppression	Immediately	Adjustment
Pn157	-	Limit for Load Oscillation Suppression	Immediately	Adjustment

- Pn155 determines frequency at which Load Oscillation Suppression is to be performed.
- Pn156 determines the filter time. You can increase this setting, and the filtering effect will be better. However, it may reduce the suppression effect due to the lag.
- You can set Limit for Load Oscillation Suppression (Pn157) as a proper limit value, helping to reduce overshooting during the start and stop.

Frequency Detection for Load Oscillation Suppression

If the frequency for the Load Oscillation Suppression can be detected by a measuring instrument (laser interferometer, etc.), please write the frequency data (in 0.1 Hz) into the Pn155 directly.

You can also use related functions in ESView V4 (FFT, etc.) to measure the frequency for the Load Oscillation Suppression.

Application Restrictions

The following application restrictions apply to the Load Oscillation Suppression.

- Load Oscillation Suppression can only be used when the Model Following Control is in effect.
- Only applied for the Manual Tuning.
- Only applied for the Position Control Modes.
- It is unavailable in fully-closed loop control.

9.6.4 Automatic Vibration Suppression

The automatic vibration suppression function determines the vibration state by the Motor during operation and recognizes the vibration frequency, and then selects the notch filter or the intermediate frequency vibration suppression function according to the characteristics of the vibration and automatically sets the vibration frequency.

The automatic vibration suppression function determines and detects the vibration frequency during the operation of the Motor, and then choose the notch filter or the IF suppression function, and set the relevant parameters for the vibration suppression.

Parameter	Setting	Meaning	When Enabled	Classification
Pn100.2	0 [Default]	Automatic Vibration Suppression is disabled.	After restart	Function
Pn100.2	1	Automatic Vibration Suppression is enabled.	Arter restart	i directori
Pn179	-	Amplitude Threshold for Vibration Detection	Immediately	Adjustment

Pn179 determines the threshold of a frequency amplitude. If the detected frequency amplitude exceeds this setting, it will be regarded as a vibration.

Applied in Tuning-less, One-Parameter Auto-Tuning, Manual Tuning, and Manual-Tuning Tool

When the automatic vibration suppression function is applied in the Tuning-less, One-Parameter Auto-Tuning, Manual Tuning, and Manual-Tuning Tool, the following parameters can be set temporarily.

Parameter	Setting	Meaning	When Enabled	Classification
Pn184	-	Frequency of Notch Filter 2	Immediately	Adjustment
Pn173	-	Frequency of Vibration Suppression Filter	Immediately	Adjustment

Applied in Auto-Tuning Tool

When the automatic vibration suppression function is applied in the Auto-tuning Tool, the following parameters can be preset, and you can decide whether to write into the Drive.

Parameter	Setting	Meaning	When Enabled	Classification
Pn181	_	Frequency of Notch Filter 1	Immediately	Adjustment
Pn184	_	Frequency of Notch Filter 2	Immediately	Adjustment
Pn187	_	Frequency of Notch Filter 3	Immediately	Adjustment

Parame	ter Setting	Meaning	When Enabled	Classification
Pn173	_	Frequency of Vibration Suppression Filter	Immediately	Adjustment

9.7 Diagnostic Tools

9.7.1 Load Inertia Identification

The Load Inertia Identification function is used to calculate the load inertia relative to the Motor rotor inertia (percentage of load inertia).

The Motor will rotate back and forth several times (the maximum rotations is 8) when using this function. You can change the number of Motor rotations for this function by the parameter Pn172.

Parameter	Setting	Meaning	When Enabled	Classification
Pn172	0 [Default]	8 rotations	Immodiately	Function
	1	4 rotations	Immediately	Function

- Stop the Motor running before performing this function.
- Ensure the movable parts have sufficient travel in the forward and reverse directions, as the Motor will run for up to 8 rotations during this operation.

Use the Panel Operator of the Drive

The following are the steps to execute the load inertia identification by using the Panel Operator.

Step 1 Make sure the drive is in manual tuning mode

Step 1 Press [M] key several times to select the Utility Function Mode.

Step 2 Press [▲] key or [▼] key to select the function number Fn009.

Step 3 Press [◀] key, and Panel Operator displays as below.

Step 4 Press [M] key to execute the load inertia identification.

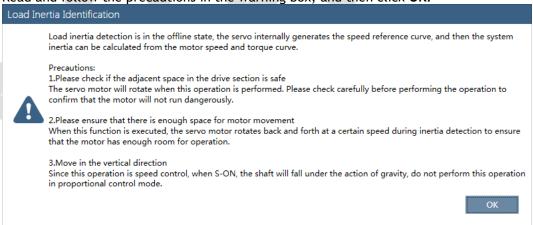
At this time, Panel Operator displays the speed of the Motor in real time.

Step 5 When this operation has been completed, Panel Operator will display the detection result (Unit: %).

NOTE: You can press the [M] key several times to execute this operation until the detection result is confirmed.

Step 6 Press [A] key to write the detection value to the parameter Pn106 (Load Inertia Percentage).

Step 7 Press [◀] key to return to the display of the Fn009.


Use the ESView V4

The following are the steps to execute the load inertia identification by using ESView V4.

Step 1 Select Advance \rightarrow Load Inertia Identification in the Menu Bar of the ESView V4 main windows.

Step 2 Read and follow the precautions in the warning box, and then click OK.

Step 3 Set Circle Count on the Load Inertia Identification dialog box, indicating the rotation number of the Motor when Load Inertia Identification function is performed.


Step 4 Click Servo Off / Servo On for supplying power to the Motor.

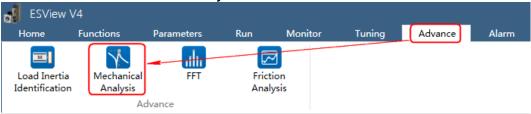
Step 5 Click Run.

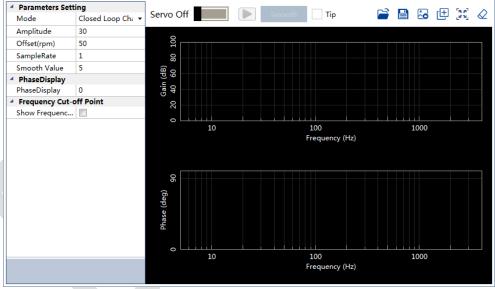
PARAMETER SETTING				
Circle Count 8Circle S	ervo On		Run	
TEST RESULTS				
Pn106 Moment of Inertia	0	% 1	Range: 0 ~ 9999)
	Save	,		

Step 6 When the **Load Inertia Identification** function has been completed, the result will be displayed in the textbox.

Step 7 Click Save to write the value into the parameter Pn106 of the Drive.

----End

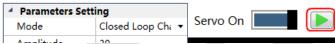

9.7.2 Mechanical Analysis


Stop the Motor running before performing this function.

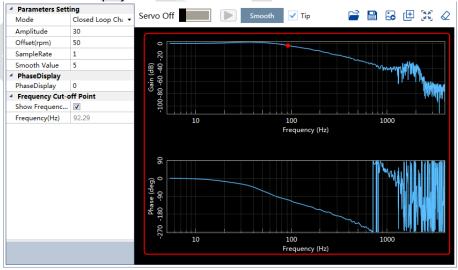
This function measures the frequency characteristics of a mechanical system where a Drive is connected to a PC. It enables the measurement of mechanical frequency characteristics without the use of special equipment.

Step 1 Select Advance \rightarrow Mechanical Analysis in the Menu Bar of the ESView V4 main windows.

Step 2 The Mechanical Analysis window will be displayed in Function Display Area.

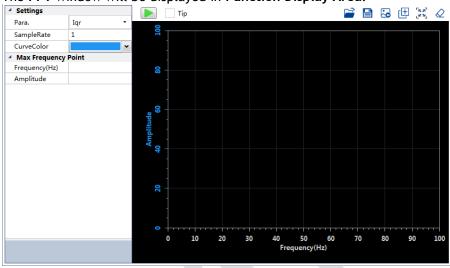


Step 3 Set the necessary parameters before performing the Mechanical Analysis function.

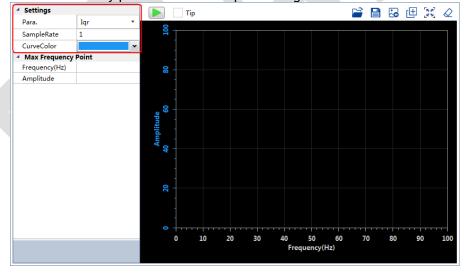

Step 4 Click Servo Off / Servo On for supplying power to the Motor.

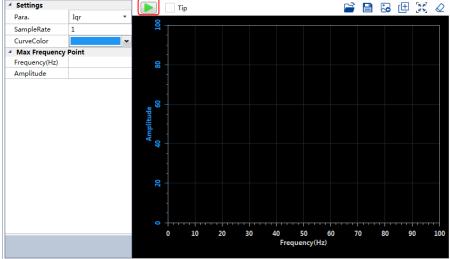
Step 5 Click to start the Mechanical Analysis function.

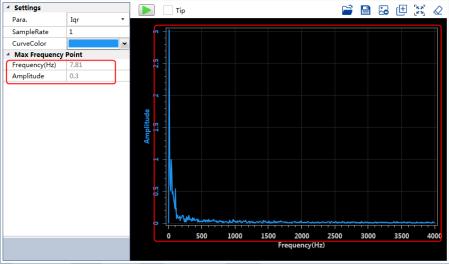
Step 6 When the **Mechanical Analysis** function has been completed, the waveform graphics of the data result is displayed in the window.


9.7.3 FFT

This function can analyze the vibration frequency of the machine and draw the graphics on the window when the Motor is running.


Step 1 Select Advance \rightarrow FFT in the Menu Bar of the ESView V4 main windows.

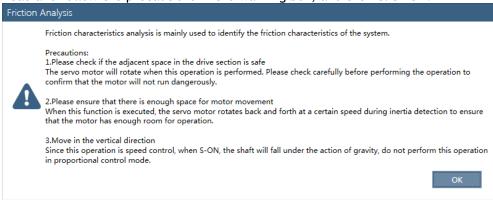

Step 2 The FFT window will be displayed in Function Display Area.


Step 3 Set the necessary parameters before performing the FFT function.

Step 4 Click to start the FFT function.

Step $5\,$ When the FFT function has been completed, the waveform graphics of the data result is displayed in the window.

9.7.4 Friction Analysis


Stop the Motor running before performing this function.

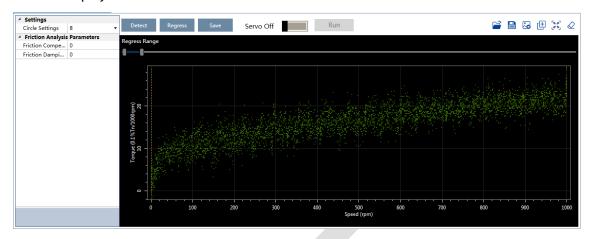
The parameters related to friction compensation of the Servo system can be set according to the friction characteristics of the Motor operation.

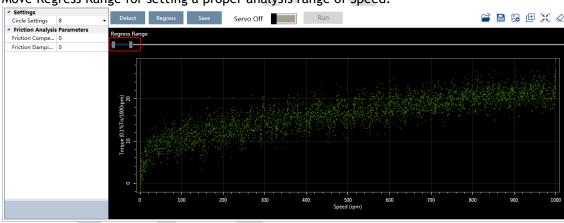
Step 1 Select Advance \rightarrow Friction Analysis in the Menu Bar of the ESView V4 main windows.

Step 2 Read and follow the precautions in the warning box, and then click **OK**.

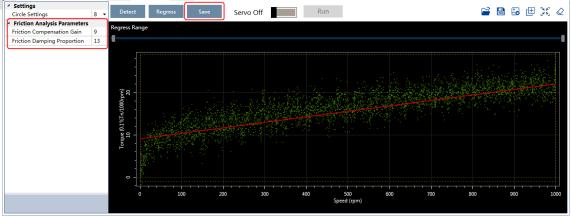
- Step 3 The Friction Analysis window will be displayed in Function Display Area.
- Step 4 Click **Detect** to perform Load Inertia Identification function if necessary.

Step 5 Set Circle Settings for the Motor rotation when performing Friction Analysis function.


Step 6 Click **Servo Off / Servo On** for supplying power to the Motor.


Step 7 Click Run.

Step 8 When the **Friction Analysis** function has been completed, the waveform graphics of the data result is displayed in the window.



Step 9 Move Regress Range for setting a proper analysis range of Speed.

Step 10 Click Regress for calculating the Friction Compensation Gain and Friction Damping Proportion.

Step 11 Click **Save** to write **Friction Compensation Gain** and **Friction Damping Proportion** into the parameters Pn130 and Pn132 of the Drive.

----End

Chapter 10 Alarm Displays

10.1 Alarm Classifications

There are three classifications of alarms for the Drive: Gr.1, Gr.2, and Warning. They will affect the display and operation for the Servo System.

Classification	Stopping Method	Panel Display
Gr.1	Stops the Motor according to the setting of Pn003.0. For details, refers to 5.5.1 Motor Stop Methods for Gr.1 Alarms, Safety State and Servo OFF.	The Panel Operator displays between Alarm No and Servo state FLT by turns.
Gr.2	Stops the Motor according to the setting of Pn004.0 For details, refers to 5.5.3 Motor Stop Methods for Gr.2 Alarms.	turns
Warning	Do not stop the Motor, and keep the current operation	The Panel Operator displays between Alarm No and Servo state run by turns. Display by turns

10.2 Troubleshooting methods

10.2.1 Gr.1 Alarm

A.01: Parameter destruction

Possible causes	Confirm the method	Action
The supply voltage drops instantaneously	Measure the supply voltage.	The supply voltage is set within the specification range and the initialization of the parameter setpoint is performed.
Parameters are written to interrupt power	Confirm the time of the power outage.	Re-write the parameter after restoring the factory value of the parameter (Fn001).
Malfunction due to noise	Confirm the runtime environment.	Take anti- interference countermeasures and then power the drive back in.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.03: Motor overspeed

Possible causes	Confirm the method	Action
The U, V, W phase sequence of the motor wiring is incorrect	Confirm the wiring of the motor.	Confirm if there is a problem with the motor wiring.

Possible causes	Confirm the method	Action
The instruction input value exceeds the overspeed value	Confirm the input instruction.	Lower the instruction value, or adjust the gain.
The motor speed exceeds the maximum speed	Confirm the waveform of the motor speed.	Reduce the speed command input gain or adjust the setting of the Pn323 (Overspeed Alarm Detection Threshold).
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	It may be a drive failure. Replace the drive.

A.04: Overload

Possible causes	Confirm the method	Action
Motor wiring, encoder wiring, or poor connection	Confirm the wiring.	Check whether there is a problem with the motor wiring and encoder wiring.
The motor runs beyond the overload protection characteristics	Confirm the overload characteristics and operating instructions of the motor.	Revisit load conditions and operating conditions. Or revisit the motor capacity.
Due to mechanical factors, the motor is not driven, resulting in excessive load during operation	Confirm the operating instructions and motor speed.	Improve mechanical factors.

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.05: The position deviation counter overflows

Possible causes	Confirm the method	Action
The wiring of the motor U, V, W is incorrect	Confirm the wiring of the motor main circuit cable.	Confirm that the motor cable or encoder cable has problems such as poor contact.
Position commands are too fast	Try lowering the position command speed before running.	Lower the position command speed or command acceleration, or adjust the electronic gear ratio.
The position instruction accelerates too much	Try slowing down the instruction acceleration before running.	With the EtherCAT command, the position command acceleration is reduced.
Deviation counter overflow alarm (Pn504) is low relative to operating conditions	Confirm that the position deviation counter overflow alarm (Pn504) is appropriate.	Correctly set the value of the parameter Pn504.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.06: The position deviation pulse overflows

Possible causes	Confirm the method	Action
Servo ON is maintained when the position deviation in servo OFF exceeds the setpoint of (Pn504× electronic gear).	Confirm the amount of positional deviation when servo OFF。	Set the correct deviation counter overflow alarm (Pn504) when servo ON.

A.07: The electronic gear setting or pulse frequency is unreasonable

Possible causes	Confirm the method	Action
The setting of the electronic gear ratio: Pn725/Pn726 (6093-01h/6093-02h) is not within the set range	Confirm that the electronic gear ratio is within a reasonable range	The setting range of the electronic gear ratio depends on the number of encoder bits: Encoder bits ≤ 20, set range: [0.001, 4000] Encoder bits ≤ 21, set range: [0.001, 8000] Encoder bits ≤ 22, set range: [0.001, 16000] Encoder bits ≤ 23, set range: [0.001, 32000] Encoder bits ≤ 24, set range: [0.001, 64000]

A.08: There is a problem with the first channel of current detection

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.09: There is a problem with the second channel of current detection

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.12: Overcurrent

Possible causes	Confirm the method	Action
The main circuit cable is wired incorrectly, or the contact is poor	Confirm that the wiring is correct.	Modify the wiring.
The main loop cable is shorted internally or a short-to-ground circuit has occurred	Confirm whether a short circuit has occurred between the UVW phases of the cable and between the UVW and the ground.	There is a possibility that the cable will be short-circuited. Replace the cable.
A short circuit or a short circuit to the ground occurs inside the motor	Confirm whether a short circuit has occurred between the UVW phases of the motor terminals and between the UVW and the ground.	It is possible that the motor is faulty. Replace the motor.
A short circuit or short-to- ground circuit occurs inside the drive	Confirm whether a short circuit has occurred between the UVW phases of the motor connection terminals of the drive and between the UVW and the ground.	It may be a drive failure. Replace the drive.

Possible causes	Confirm the method	Action
The braking resistor is wired incorrectly or has poor contact	Confirm that the wiring is correct.	Modify the wiring.
Dynamic brakes (emergency stops due to DB or drives) are used frequently, or DB brake circuit damage alarms occur	The DB usage frequency is confirmed by the DB resistor power dissipation. Or use the alarm display to confirm if damage to the DB braking circuit (A.1B) has occurred.	变更驱动器的选型、运行方法和机构,以降低 DB的使用频率。
Exceeds the braking capacity	Confirm how often the braking resistor is used.	Change the selection, operating method, and mechanism of the drive to reduce the frequency of DB usage.
The braking resistance value of the drive is too small	Confirm how often the braking resistor is used.	Change the braking resistance value to a value above the minimum allowable resistance value of the drive.
High loads are tolerated when the motor is stopped or when running at low speeds	Confirm that the operating conditions are outside the specification range of the servo drive.	Reduce the load on the motor. Or run at a higher operating speed.

Possible causes	Confirm the method	Action
Malfunction due to noise	Improve the noise environment such as wiring and settings to confirm whether there is any effect.	Take anti-interference measures, such as correct wiring of FG. In addition, please use a wire with the same size as the driver main circuit wire for the FG wire size.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.13: Overvoltage

Possible causes	Confirm the method	Action
The supply voltage is out of specification	Measure the supply voltage.	Adjust the AC/DC supply voltage to the product specifications.
The power supply is in an unstable state or has been affected by lightning strikes	Measure the supply voltage.	Improve power conditions and power the drive again after setting the surge suppressor. When an alert still occurs, it may be a drive failure. Replace the drive.
Acceleration and deceleration occur when the AC supply voltage exceeds the specification range	Confirm the supply voltage and speed and torque during operation.	Adjust the AC supply voltage to the product specifications.
The external braking resistance value is larger than the operating conditions	Confirm the operating conditions and braking resistance values.	Considering the operating conditions and loads, the braking resistance value is revisited.

Possible causes	Confirm the method	Action
Operates above the allowable moment of inertia or mass ratio	Confirm that the moment of inertia or mass ratio is within the allowable range.	Extend the deceleration time or reduce the load.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.14: Undervoltage

Possible causes	Confirm the method	Action
The supply voltage is below specification	Measure the supply voltage.	Regulate the supply voltage to the normal range.
The supply voltage drops during operation	Measure the supply voltage.	Increase the power supply capacity.
An instantaneous power outage occurs	Measure the supply voltage.	If the instantaneous stop hold time (Pn538) is changed, it is set to a smaller value.
The fuse of the drive is blown	-	Replace the drive, connect the reactor to the DC reactor connection terminals (P1, P2), and use the drive.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.16: Regeneration abnormalities

Possible causes	Confirm the method	Action
The drive requires an external braking resistor	Confirm the connection of the external regenerative resistor and check the setpoints of Pn535 and Pn536.	After connecting the external braking resistor, set Pn535 and Pn536 to the appropriate values.
When an external braking resistor is not used, the short wiring of B2 and B3 falls off	Confirm the connection of the short wires of B2 and B3.	Properly wire the short wiring.
External regenerative resistors are poorly wired, detached, or disconnected	Confirm the wiring of the external regenerative resistor.	Properly wired external regenerative resistors.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.18: The module is overheating

Possible causes	Confirm the method	Action
The ambient temperature is too high	Measure the ambient temperature with a thermometer. Or confirm health through drive provisioning environment monitoring.	Improve drive setup conditions and reduce ambient temperature.

Possible causes	Confirm the method	Action
The overload alarm was reset several times by powering it off and then running	Use the alert display to confirm if an overload alert has occurred.	Change the reset method for the alert.
The load is too heavy, or the regeneration capacity is exceeded during operation	The load in operation is confirmed by the cumulative load rate, and the regenerative processing capacity is confirmed by the regenerative load rate.	Revisit load conditions and operating conditions.
The orientation of the drive and the spacing from other drives are unreasonable	Confirm the setup status of the drive.	Install according to the installation standards of the drive.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.1D: The temperature sensor is disconnected

Possible causes	Confirm the method	Action
The ambient temperature is too high	Measure the ambient temperature with a thermometer. Or confirm health through drive provisioning environment monitoring.	Improve drive setup conditions and reduce ambient temperature.

Possible causes	Confirm the method	Action
The overload alarm was reset several times by powering it off and then running	Use the alert display to confirm if an overload alert has occurred.	Change the reset method for the alert.
The load is too heavy, or the regeneration capacity is exceeded during operation	The load in operation is confirmed by the cumulative load rate, and the regenerative processing capacity is confirmed by the regenerative load rate.	Revisit load conditions and operating conditions.
The orientation of the drive and the spacing from other drives are unreasonable	Confirm the setup status of the drive.	Install according to the installation standards of the drive.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.1E: The main charge circuit is faulty

Possible causes	Confirm the method	Action
The drive requires an external braking resistor	Confirm the connection of the external regenerative resistor and check the setpoints of Pn535 and Pn536.	After connecting the external braking resistor, set Pn535 and Pn536 to the appropriate values.

Possible causes	Confirm the method	Action
When an external braking resistor is not used, the short wiring of B2 and B3 falls off	Confirm the connection of the short wires of B2 and B3.	Properly wire the short wiring.
External regenerative resistors are poorly wired, detached, or disconnected	Confirm the wiring of the external regenerative resistor.	Properly wired external regenerative resistors.
The external regenerative resistance value or regenerative resistance capacity is insufficient, or it is in a continuous regeneration state	Again, the operating conditions or capacity are confirmed.	Change the regeneration resistance value and regenerative resistance capacity. Adjust the operating conditions again.
Continuously bear negative loads and are in a state of continuous regeneration	Confirm the load applied to the motor in operation.	Revisiting the system, which includes servo, mechanical, and operating conditions.
The capacity set in Pn536 (discharge resistor power) is less than the capacity of the external regenerative resistor	Confirm the connection of the regenerative resistor and the value of Pn536.	Corrects the setpoint of Pn536.

Possible causes	Confirm the method	Action
The value set in Pn535 (Discharge Resistor Resistance) is less than the external regenerative resistance value	Confirm the connection of the regenerative resistor and the value of Pn535.	Corrects the setpoint of Pn535.
The external regeneration resistance value is too large	Confirm that the regeneration resistance value is correct.	Change it to the correct resistance value and capacity.
Drive failure	Confermtat Tregnatien Rescisteins Valleus Correcht.	Replace the drive.

A.1F: Short-to-ground fault

Possible causes	Confirm the method	Action
The motor cable has a short-circuit to ground	Confirm if a short circuit has occurred between the UVW of the cable and the ground.	There is a possibility that the cable will be short-circuited. Replace the cable.
A short- to- ground circuit has occurred inside the drive	Confirm whether a short circuit has occurred between the UVW and the ground of the motor connection terminal of the drive.	It may be a drive failure. Replace the drive.

A.24: The main loop power supply is wired incorrectly

Possible causes	Confirm the method	Action
A single- phase AC power supply input (Pn007.1 = 0) is not set and a single- phase power supply is entered	Confirm power and parameter settings.	Set the correct power inputs and parameters.

A.37: Control panel communication timed out

Possible causes	Confirm the method	Action
Poor connection between the operator panel and the drive	Confirm the contact of the connector.	Reinsert the connector. Or replace the cable.
Malfunction due to noise	Improve the noise environment such as wiring and settings to confirm whether there is any effect.	Keep the operator panel body or cable away from devices/cables that are generating noise interference.
Operator panel failure	Connect the operator panel again. When an alarm still occurs, it is possible that the operator panel is malfunctioning.	Replace the operator panel.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.42: The motor power does not match the drive power

Possible causes	Confirm the method	Action
The drive capacity does not match the capacity of the motor	The drive capacity must be the same as the motor capacity.	Match the capacity of the drive to the motor.
Encoder failure	After replacing the encoder, confirm that the alarm no longer occurs.	Replace the motor (encoder).
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.43: The encoder type is incorrect

Possible causes	Confirm the method	Action
Encoder failure	After replacing the encoder, confirm that the alarm no longer occurs.	Replace the motor (encoder).
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.45: Multi-turn data error

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.

Possible causes	Confirm the method	Action
The battery voltage is below the specified value	Measure the voltage of the battery.	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.46: Multi-turn data overflow

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.
		Set up one of the following:
		Use the operator panel to perform Fn010 and Fn011.
Multiple laps of data have overflowed	-	Using ESView V4, go to the "Functions→ Configuration Wizard→ Encoder Settings", then click "Clear Multiturn Messages" and "Clear Multiturn Alarms".

A.47: The absolute encoder battery voltage is too low

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.
The battery voltage is below 2.45V	Measure the voltage of the battery.	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.48: Absolute encoder battery voltage undervoltage

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.
The battery voltage is below 3.0V	Measure the voltage of the battery.	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.49: Multiple or singleturn data anomalies were detected

Possible causes	Confirm the method	Action
The battery is poorly connected and not connected	Confirm the connection of the battery.	Properly connect the battery.
The battery voltage is below 3.0V	Measure the voltage of the battery.	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.50: The encoder is disconnected

Possible causes	Confirm the method	Action
The encoder cable is wired incorrectly	Confirm the wiring of the motor encoder cable.	Confirm that the motor cable or encoder cable has problems such as poor contact.
Malfunction due to noise	Improve the noise environment such as wiring and settings to confirm whether there is any effect.	Adopt anti- interference countermeasures.
Encoder failure	Power on the drive. When an alarm still occurs, it is possible that the motor is malfunctioning.	Replace the motor.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.51: Absolute encoder overspeed detection

Possible causes	Confirm the method	Action
When the control power is turned on, the motor rotates at a speed of more than 200 rpm	The speed of the motor is confirmed by the speed of the motor when the power is turned on.	Adjust the motor speed to less than 200 rpm and turn on the control power.
Encoder failure	Power on the drive. When an alarm still occurs, it is possible that the motor or absolute encoder is faulty.	Replace the motor or absolute encoder.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.52: An error occurred inside the encoder

Possible causes	Confirm the method	Action
Encoder- related alarms have not been reset	Resets the encoder- related alarms	Set up one of the following: Use the operator panel to perform Fn010 and Fn011. Using ESView V4, go to the "Functions→ Configuration Wizard→ Encoder Settings", then click "Clear Multiturn Messages" and "Clear Multiturn Alarms".

A.53: Error encoder lap information

Possible causes	Confirm the method	Action
Encoder- related alarms have not been reset	Resets the encoder- related alarms	Set up one of the following: Use the operator panel to perform Fn010 and Fn011. Using ESView V4, go to the "Functions→ Configuration Wizard→ Encoder Settings", then click "Clear Multiturn Messages" and "Clear Multiturn Alarms".

A.54: Errors occurred at the check digits and cutoff bits in the encoder control domain

Possible causes	Confirm the method	Action
Encoder- related alarms have not been reset	Resets the encoder- related alarms	Set up one of the following: Use the operator panel to perform Fn010 and Fn011. Using ESView V4, go to the "Functions→ Configuration Wizard→ Encoder Settings", then click "Clear Multiturn Messages" and "Clear Multiturn Alarms".

A.58: Information such as encoder zone phase is empty or incorrect

Possible causes	Confirm the method	Action
Encoder failure	Power on the drive. When an alarm still occurs, it is possible that the motor or absolute encoder is faulty.	Replace the motor or absolute encoder.

A.59: Information such as the motor body in the second area of the encoder is empty or wrong

Possible		
causes	Confirm the method	Action
Encoder failure	Power on the drive. When an alarm still occurs, it is possible that the motor or absolute encoder is faulty.	Replace the motor or absolute encoder.

A.65: Location overflow alarm

Possible causes	Confirm the method	Action
The wiring of the motor U, V, W is incorrect	Confirm the wiring of the motor main circuit cable.	Confirm that the motor cable or encoder cable has problems such as poor contact.
Position commands are too fast	Try lowering the position command speed before running.	Lower the position command speed or command acceleration, or adjust the electronic gear ratio.
The position instruction accelerates	Try to reduce the acceleration of the command before running.	With the EtherCAT command, the position

Possible causes	Confirm the method	Action
Deviation counter overflow alarm (Pn504) is low relative to operating conditions	Confirm that the position deviation counter overflow alarm (Pn504) is appropriate.	Correctly set the value of the parameter Pn504.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.70: DC synchronization error

Possible causes	Confirm the method	Action
Synchronization timing (Sync0) fluctuations in EtherCAT communication.		Reboot the drive to re-establish EtherCAT communication.

A.71: SM Event synchronization event premature

Possible causes	Confirm the method	Action
EtherCAT communicatio n error due to noise.	-	Check the EtherCAT wiring and implement noise countermeasures
The controller does not update process data during a fixed period of time.	Examine the process data specified by the controller.	Modify the controller's configuration so that it can update process data during a fixed period.

Possible causes	Confirm the method	Action
The EtherCAT communicatio n cable or connector wiring is faulty.	Check the EtherCAT communicatio n cables and connector wiring.	Modify the wiring.

A.72: SM Event synchronization event timed out

Possible causes	Confirm the method	Action
EtherCAT communicatio n error due to noise.	-	Check the EtherCAT wiring and implement noise countermeasures
The controller does not update process data during a fixed period of time.	Examine the process data specified by the controller.	Modify the controller's configuration so that it can update process data during a fixed period.
The EtherCAT communicatio n cable or connector wiring is faulty.	Check the EtherCAT communicatio n cables and connector wiring.	Modify the wiring.

A.73: EtherCAT processor internal error

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.74: The position is set in the Cubic interpolation algorithm with a period error

Possible causes	Confirm the method	Action
Synchronization timing (Sync0) fluctuations in EtherCAT communication	-	Reboot the drive to re-establish EtherCAT communication.

A.75: There was an error setting for the synchronization period

Possible causes	Confirm the method	Action
Synchronization timing (Sync0) fluctuations in EtherCAT communication		Reboot the drive to re-establish EtherCAT communication.
The setting of object 60C2 is not an integer multiple of 125µs	Check the setpoint of object 60C2	Correctly set object 60C2.

A.76: The acceleration object is set to 0 in PP/PV mode

Possible causes	Confirm the method	Action
The setpoints for objects 6083, 6084, 6085 are incorrect	The setpoints for objects 6083, 6084, 6085 (not 0).	Correctly set objects 6083, 6084, 6085.

A.77: OP mode process data watchdog communication timed out

Possible causes	Confirm the method	Action
Detects whether the master controller sends process data properly	The data transmission interval is detected by the wireshark packet capture software	Reboot the drive to re-establish EtherCAT communication.
Whether the network cable is loose	Check whether the network cable is plugged in tightly	Reseat the network cable

A.81: The motor UVW wiring is wrong

Possible causes	Confirm the method	Action
A short circuit or a short circuit to the ground occurs inside the motor	Confirm whether a short circuit has occurred between the UVW phases of the motor terminals and between the UVW and the ground	It is possible that the motor is faulty. Replace the motor.
The U, V, W phase sequence of the motor wiring is incorrect	Confirm the wiring of the motor.	Confirm if there is a problem with the motor wiring.

A.82: The motor type does not match

Possible causes	Confirm the method	Action
The drive capacity does not match the capacity of the motor	The drive capacity must be the same as the motor capacity.	Match the capacity of the drive to the motor.

A.83: The motor is operating abnormally

Possible causes	Confirm the method	Action
A short circuit or a short circuit to the ground occurs inside the motor	Confirm whether a short circuit has occurred between the UVW phases of the motor terminals and between the UVW and the ground.	It is possible that the motor is faulty. Replace the motor.
The U, V, W phase sequence of the motor wiring is incorrect	Confirm the wiring of the motor.	Confirm if there is a problem with the motor wiring.

A.FO: Internal logic exceptions

Possible causes	Confirm the method	Action
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

Gr.2 Alarm

A.15: The regenerative resistance is damaged

Possible causes	Confirm the method	Action
The drive requires an external braking resistor	Confirm the connection of the external regenerative resistor and check the setpoints of Pn535 and Pn536.	Aft Connell Tinte Externard Brakin Recisto, Setben 535 Anderben 536 Tot Aproprit Valluet.
When an external braking resistor is not used, the short wiring of B2 and B3 falls off	Confirm the connection of the short wires of B2 and B3.	Properly wire the short wiring.
External regenerative resistors are poorly wired, detached, or disconnected	Confirm the wiring of the external regenerative resistor.	Properly wired external regenerative resistors.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.1A: The charging resistance is overloaded

Possible causes	Confirm the method	Action
The input power supply is unstable	Measure and confirm the status of the input power supply.	Ensure that the input power supply is stable.
Power is turned on and off too frequently	-	Extend the interval between power on and off or reduce the frequency of power on and off.

A.1B: The DB braking circuit is damaged

Possible causes	Confirm the method	Action
The motor is driven by an external force	Confirm the health status。	Do not drive the motor by external force.
The rotational		Try the following measures.
or running energy at the time	The DB usage frequency is	Reduce the command speed of the motor.
the DB is stopped exceeds the	confirmed by the DB resistor power dissipation.	Adjust the moment of inertia or mass ratio.
capacity of the DB resistance		Reduce the number of DB stops.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.20: The main loop power line is out of phase

Possible causes	Confirm the method	Action
Poor wiring of three-phase wires	Confirm the power wiring.	Confirm if there is a problem with the power wiring.
The three- phase power supply is unbalanced	Measure the voltage of each phase of a three-phase power supply.	Corrects the imbalance of the power supply (reversing phase).

Possible causes	Confirm the method	Action
A single- phase AC power supply input (Pn007.1 = 0) is not set and a single- phase power supply is entered	Confirm power and parameter settings.	Set the correct power inputs and parameters.
Drive failure	Power on the drive. When an alert still occurs, it may be a drive failure.	Replace the drive.

A.33: USB Power Supply Exceptions

Cause	Way of confirmation	Solution
USB cable is damaged	Confirm USB cable	Replace the USB drive
Drive failure	If the alarm still occurs when the USB cable is replaced, the drive may be faulty	Replace the drive

A.49: Multi-turn or Single-turn Data Exception Detected

Cause	Way of confirmation	Solution
Poor battery connection, or not connected	Confirm battery installation	Install the battery correctly
Battery voltage below 3.0V	Measure the battery voltage	• Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Re-apply power to the drive. If the alarm still occurs, the drive may be faulty.	Replace the drive.

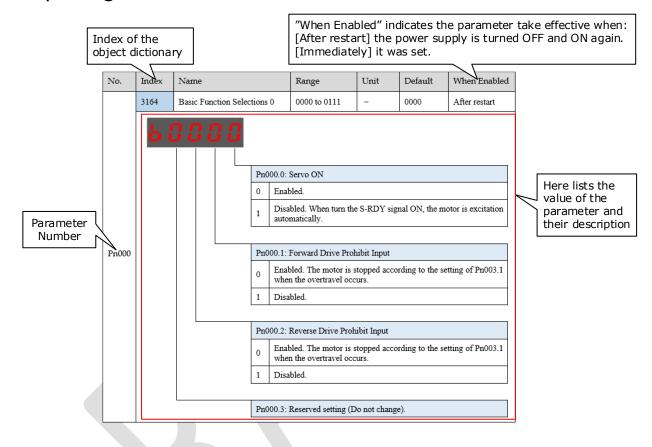
A.4A: Excessive Encoder Temperature

Cause	Way of confirmation	Solution
High ambient temperature of the motor	Measure the ambient temperature of the motor.	Adjust the ambient temperature of the motor to below 40°C.

Cause	Way of confirmation	Solution
Motor running at a load in excess of the rated value	Confirm load by cumulative load factor.	Adjust the load of the motor before running to a value within the rated value.
Encoder failure	Re-apply power to the drive. If the alarm still occurs, it is possible that the motor or absolute encoder is faulty.	Replace the motor or absolute encoder.
Drive failure	Re-apply power to the drive. If the alarm still occurs, the drive may be faulty.	Replace the drive.

10.2.2 Warnings

A.4B: Absolute Encoder Battery Undervoltage (Tamagawa)


Cause	Way of confirmation	Solution
Poor battery connection, or not connected	Confirm battery installation	Install the battery correctly
Battery voltage below 3.0V	Measure the battery voltage	Replace the battery and clear the alarm. See "3.5.3 Installing or Replacing the Battery".
Drive failure	Re-apply power to the drive. If the alarm still occurs, the drive may be faulty.	Replace the drive.

A.D5: Fan Disconnection Warning

Cause	Way of confirmation	Solution		
Fan is disconnected	Confirm if the fan is working	Confirm if the internal fan is wired correctly		
Fan is damaged	Fan does not work even after correct wiring	• Replace the drive		

Chapter 11 Parameters

11.1 Interpreting the Parameter Lists

11.2 Parameters Detailed

No.	Index	Name		Range	Unit	Default	When Enabled			
	3164	Basic Function Select	tions 0	0000 to 0111	_	0000	After restart			
Pn000			Pn000.1: Disa Pn000.2: Disa Pn000.1: Disa	Servo ON oled. bled. When turn tation automatical Forward Drive Probled. The Motor in the overse Drive Probled. Reverse Drive Probled. The Motor in the overse Drive Probled. Oled. The Motor in the overse Died. The Motor in the overse Died.	ohibit Input s stopped a ertravel occ ohibit Input s stopped a ertravel occ	according to the	e setting of			
	Pn000.3: Reserved setting (Do not change).									

No.	Index	Name	Range	Unit	Default	When Enabled					
	3165	Basic Function Selections 1	0000 to 0001	_	0000	After restart					
Pn001	5 1	0 Us 1 Us Pn001.2	e: CCW, CW e: CCW as the forwar e: CW as the forwar e: Reserved setting e: Reserved setting e: Reserved setting	(Do not ch	ange).						
	3166	Application Function Selections 2	0000 to 0100	-	0000	After restart					
		Pn002.	: Reserved setting	(Do not ch	ange).						
Pn002				•	3 /						
		Pn002.	: Reserved setting	(Do not ch	ange).						
		Pn002.2	: Usage of Absolut	e Encoder							
			e the encoder as a								
		1 Us	e the encoder as a	n increment	tal encoder.						
		Pn002.3	Pn002.3: Reserved setting (Do not change).								

No.	Index	Name			Range	Unit	Default	When Enabled
	3167	Application Selection	on Function s 3		0000 to 1032	_	0000	After restart
Pn003	H !		Pr ST 0 1 2 3	Apple state Coas Apple Coas Apple clan	Motor Stopping Maying the dynamic st the Motor to a saying the reverse being state.	brake and brake and stop. Dethod for Control brake and the brake and th	then let the Mother place the Divertravel then let the Mother place the Mother let the Mother le	tor coast. Motor in DB tor coast. otor in zero
			Pr	1003.2:	Reserved setting	(Do not cha	ange).	
			Pr	1003.3:	Overload Enhance	ement		
			0	Disa	bled.			
					oled. This function that the contract of the conditions setting is unavail	han 2 times that requi	s rated load, w re frequent star	hich can be

No.	Index	Name		Range	Unit	Default	When Enabled		
	3168	Application Func Selections 4	tion	0000 to 0025	_	0000	After restart		
	H	3000							
			Pn004.0	: Motor Stopping A	Nethods for	Gr.2 Alarms			
			0 Арј	olying the dynamic	brake and	then let the Mo	otor coast.		
			1 App	olying the dynamic	brake and	then place the	Motor in DB		
			2 Coa	ast the Motor to a	stop.				
			3 App	-	ying the reverse brake and then place the Motor in DB				
Pn004			4 App	Applying the reverse brake and then let the Motor coast.					
				gards Gr.2 Alarms a stopped.	as the Warn	ings, and the Mo	otor will not		
			Pn004.1	: Deviation Counte	er Clear in L	ocal Control Mo	ode		
			0 Res	set to zero when So	ervo is OFF	or STO is availa	ıble.		
			1 Res	served setting (Do	not change).			
				set to zero when ertravel is occurred		FF, or STO is a	vailable, or		
			Pn004.2	: Reserved setting	(Do not ch	ange).			
			Pn004.3	Pn004.3: Reserved setting (Do not change).					

No. Index	Name	Name		Unit	Default	When Enabled
3169	Application Function Selections 5	on	00d0 to 33d3	_	00d0	After restart
Pn005		0 Use 1 Res 2 Use 3 Res Pn005.1 d Use 1 Use 1 Sis (Pr 2 Use 3 Use 1 Use 1 Sis (Pr 2 Use 2 Use 1 Use 1 Use 1 Use 1 Use 1 Use 2 Use 2 Use 1 Use	2: Internal Torque of the general interserved setting (Do to the high-speed in served setting (Do to the high-speed in served setting (Do to the parameter reserved setting (Do to the parameter reserved setting (Do to the internal torque to the internal torque to the internal torque expolation algorithm (Doh is set to Cubic to the internal speed the speed feedforward available when in 150.0) is enabled. The speed feedforward in the bus contained the speed feedforward in the speed feedforward	nal torque not use.) Internal tor not use.) Internal tor not use.) Internal tor not use.) Internal tor ward Method use feedforward secontrol and feedforward secontrol and d feedforward secontrol and d feedforward secontrol and	e feedforward. Inque feedforward. Insulation and generated is available which algorithm is a speed feedfoollowing. Contact by the control of the control o	orward, which rol Selection by Cubic en the object n bus control. orward, which rol Selection orward, which rol Selection bler, which is ject 60B1h.

No.	Index	Name		Range	Unit	Default	When Enabled
	316A	Application Function Selections 6		0000 to 0001	_	0001	After restart
Pn006	H 1	Pn00	Do no of Pr Use 6.1:	Bus Selection ot use the Bus. Sen005.1. EtherCAT. Reserved setting Reserved setting Reserved setting	(Do not cha	ange).	the setting
	316B	Application Function Selections 7		0000 to 1120	-	0010	After restart
Pn007	H	Pn00 0 1 Pn00 0 1 1	7.1: Single Thre 7.2: Disale	Reserved setting Power Supply Sel le-phase AC re-phase AC Torque Limit Act bled. oled.	ection ion When U		curs
			7.3: 50 H	AC Supply Freque	ency		
		1	60 H	Z			

No.	Index	Name		Range	Unit	Default	When Enabled
D 000	316C	Initial Display Selection When Power On		0 to 9999	_	0010	After restart
Pn008		displayed Un Number who	-			wering on the d	evice.
	316D	Application Function Selections 9		0000 to 0001	_	0000	After restart
Pn009		Pn0	Shared DC Bus Fundbled. bled. Reserved setting Reserved setting	(Do not ch	ange).		
		PnC	09.3:	Reserved setting	(Do not ch	ange).	

No.	Index	Name		Range	Unit	Default	When Enabled
	31C8	Tuning Function		0001 to 1105	_	0001	After restart
Pn100			1 Tun 2 Rese 3 One 4 Rese 5 Man Pn100.1: Pn100.2: 0 Disa 1 Ena Pn100.3: the One- 0 Star	Tuning Mode ing-less erved setting (Do -parameter auto- erved setting (Do aual tuning Reserved setting Automatic Vibrat abled. bled. Damping Selecti parameter auto- andard: Short positione: Stable position	tuning not change (Do not change) tion Suppresion (This pauning functioning time	ange). ssion Selection arameter is avaion is selected.	overshoot.
Pn101	31C9	Servo Rigidity		0 to 500	Hz	40	Immediatel y
PILLO	· -	ameter determines formance can be imp				-	on occurs.
Pn102	31CA	Speed Loop Gain		1 to 10000	rad/s	500	Immediatel y
	This parameter determines the bandwidth of the speed loop.						
Pn103	31CB	Speed Loop Integra	al Time	1 to 5000	0.1ms	125	Immediatel y
	Reduce	this value can shorte	en position	ing time and spee	ed response	time.	

No.	Index	Name	Range	Unit	Default	When Enabled			
	31CC	Position Loop Gain	0 to 1000	1/s	40	Immediatel y			
Pn104	This parameter determines the bandwidth of position loop. Increase this value can improve the stiffness of positioning, decrease if the system vibrates.								
D-405	31CD	Torque Reference Filter Time	0 to 2500	50	0.01ms	Immediatel y			
Pn105	This parameter determines the bandwidth of torque reference filter, the filter is used to filter out the noise in torque reference.								
Pn106	31CE	Load Inertia Percentage	0 to 9999	%	0	Immediatel y			
	This value should be set to the percentage of load inertia and Motor inertia.								
Pn107	31CF	Second Speed Loop Gain	1 to 10000	rad/s	250	Immediatel y			
	-								
Pn108	31D0	Second Speed Loop Integral Time	1 to 5000	rad/s	200	Immediatel y			
	-								
Pn109	31D1	Second Position Loop Gain	0 to 1000	1/s	40	Immediatel y			
Pn110	31D2	Second Torque Reference Filter Time	0 to 2500	0.01ms	100	Immediatel y			
	-								
	31D4	Speed Feedforward	0 to 100	%	0	Immediatel y			
Pn112	This value is a percentage of the internal speed feedforward. This value is available when the internal speed feedforward is selected (Pn005.3=0).								
	31D5	Speed Feedforward Filter Time	0 to 640	0.1ms	0	Immediatel y			
Pn113		ameter determines the bandwi filter out the noise in internal			rward filter. Th	e filter is			

No.	Index	Name	Range	Unit	Default	When Enabled		
	31D6	Torque Feedforward	0 to 100	%	0	Immediatel y		
Pn114		ue is a percentage of the internue is available when the intern	•		ected (Pn005.2=	0).		
Pn115	31D7	Torque Feedforward Filter Time	0 to 640	0.1ms	0	Immediatel y		
PILLIS		ameter determines the bandwi filter out the noise in internal			orward filter. TI	he filter is		
	31D8	P/PI Switch Mode	0 to 4		0	After restart		
Pn116	 [0] Use torque reference as the condition (threshold setting: Pn117). [1] Use position deviation counter as the condition (threshold setting: Pn118). [2] Use acceleration reference as the condition (threshold setting: Pn119). [3] Use the speed reference as the condition (threshold setting: Pn120). [4] Fixed to PI Control. 							
D. 447	31D9	Torque Reference Threshold for P/PI Switch	0 to 300	%	200	Immediatel y		
Pn117	The threshold is used to switch speed controller from PI to P. This value is a percentage of torque reference.							
Pn118	31DA	Deviation Counter Threshold for P/PI Switch	0 to 10000	1 pulse	0	Immediatel y		
	The threshold is used to switch speed controller from PI to P. This value is a pulse number.							
Pn119	31DB	Acceleration Reference Threshold for P/PI Switch	0 to 3000	10 rpm/s	0	Immediatel y		
FILLIA	The threshold is used to switch speed controller from PI to P. This value is an acceleration reference.							
Pn120	31DC	Speed Reference Threshold for P/PI Switch	0 to 10000	rpm	0	Immediatel y		
	The thre	shold is used to switch speed (controller from PI	to P. This	value is a speed	reference.		

No.	Index	Name	Range	Unit	Default	When Enabled		
	31DD	Gain Switch Mode	0 to 10	_	0	After restart		
Pn121	 [0] Fixed to first group gains. [1] Use external signal (G-SEL) as the condition. [2] Use torque reference as the condition (threshold setting: Pn117). [3] Use position deviation counter as the condition (threshold setting: Pn118). [4] Use acceleration as the condition (threshold setting: Pn119). [5] Use speed reference as the condition (threshold setting: Pn120). [6] Use position reference as the condition (threshold setting: Pn123). [7] Use actual speed as the condition (threshold setting: Pn124). [8] Use position reference (Pn123) and actual speed (Pn124) as the condition. [9] Fixed to second group gains. [10] Use positioning completed flag as the condition. 							
Pn122	31DE	Delay Time for Gain Switch	0 to 20000	0.1 ms	0	Immediatel y		
	The delay time for gain switching after the condition has satisfied.							
Pn123	31DF	Threshold for Gain Switch	0 to 20000	-	0	Immediatel y		
	The threshold of speed reference for gain switching.							
D 424	31E0	Speed Threshold for Gain Switch	0 to 2000	rpm	0	Immediatel y		
Pn124	This parameter is available only when using position reference and actual speed as the condition (Pn121=8).							
Pn125	31E1	Ramp Time for Position Loop Gain Switch	0 to 20000	0.1 ms	0	Immediatel y		
	Ramp time for gain switching, it is only available to position loop gain.							
Pn126	31E2	Hysteresis for Gain Switch	0 to 20000	_	0	Immediatel y		
	Hysteresis of gain switching conditions. It is used to prevent gain switching frequently.							
	31E3	Low Speed Filter	0 to 100	1 cycle	0	Immediatel y		
Pn127		ameter determines the perforr Il filter out the noise in low spo large.						

No.	Index	Name	Range	Unit	Default	When Enabled		
Pn130	31E6	Coulomb Friction Compensation	0 to 3000	0.1%Tn	0	Immediatel y		
P11130	This parameter is used to compensate coulomb friction. The value is the permillage of coulomb friction and Motor rated torque.							
Pn131	31E7	Speed Dead Band for Coulomb Friction Compensation	0 to 100	rpm	0	Immediatel y		
	To set a zero spe	dead band to disable coulomb ed.	friction compens	ation. It is	used to prevent	vibration at		
Pn132	31E8	Viscous Friction Compensation	0 to 1000	0.1%Tn/ 1000rpm	0	Immediatel y		
	_							
	31EB	Encoder Speed Filter Time	0 to 30000	0.01ms	4	Immediatel y		
Pn135	To set a proper time for smoothing the changes in the feedback speed to reduce vibration. This parameter is available when the instantaneous speed is not used as the speed feedback (Pn162=0).							
	31FA	Model Following Control Function	0000 to 0002	-	0000	After restart		
Pn150	7	0 Do n 1 Use 2 Use supp Pn150.1:	Model Following not use. the model following the model followers on the model followers of the model followers of the model followers. Reserved setting Reserved setting	ing control. owing con (Do not ch	ange).	oscillation		

No.	Index	Name	Range	Unit	Default	When Enabled			
	31FB	Model Following Control Gain	10 to 1000	1/s	50	Immediatel y			
Pn151	This parameter determines the response characteristic of the servo system. If you increase the setting of the model following control gain, the response characteristic will improve and the positioning time will be shortened.								
Pn152	31FC	Model Following Control Gain Correction	20 to 500	%	100	Immediatel y			
	This para	ameter is used for correcting t	he setting of the	model follo	wing control ga	in.			
	31FD	Model Following Control Speed Feedforward	0 to 200	%	100	Immediatel y			
Pn153	This parameter is used for fine tuning the speed feedforward value output by the model following control gain. If you increase this setting, the bias can be reduced but overshooting will be likely to occur.								
	31FE	Model Following Control Torque Feedforward	0 to 200	%	100	Immediatel y			
Pn154	This parameter is used for fine-tuning the torque feedforward value output by the model following control gain. If you increase this setting, the response characteristic can be improved but overshooting will be likely to occur.								
Pn155	31FF	Load Oscillation Frequency	50 to 500	0.1 Hz	100	Immediatel y			
	In general, this setting is the anti-resonance frequency of the two-mass servo system.								
D. 454	3200	Filter Time for Load Oscillation Suppression	2 to 500	0.1 ms	10	Immediatel y			
Pn156	If you increase this setting, the response characteristic can be softer but the effect of vibration suppression will be worse.								
	3201	Limit for Load Oscillation Suppression	0 to 1000	rpm	100	Immediatel y			
Pn157	To set a compensation limiting for the jitter suppression at speed feedforward. If you decrease this setting, the response characteristic can be softer but the effect of vibration suppression will be worse.								
	3204	Load Torque Compensation	0 to 100	%	0	Immediatel y			
Pn160	Increase	This parameter is a coefficient (percentage) to compensate load torque. Increase this value can improve load disturbance rejection performance but may cause vibration.							

No.	Index	Name	Range	Unit	Default	When Enabled			
Pn161	3205	Load Torque Observer Gain	0 to 1000	Hz	200	Immediatel y			
	This parameter is used to adjust the response characteristic of the load observer.								
	3206	Feedback Speed Selection	0 to 1	_	0	After restart			
Pn162	[0] Use encoder speed as the feedback speed. [1] Use observed speed as the feedback speed.								
Pn164	3208	Turns for PJOG0	-50 to 50	rotation	5	Immediatel y			
-	-								
Pn165	3209	Max Speed for PJOG0	100 to 3000	rpm	1000	Immediatel y			
Pn166	320A	Acc./Dec. Time for PJOG0	50 to 2000	ms	500	Immediatel y			
	-								
Pn167	320B	Stop Time for PJOG0	100 to 10000	ms	1000	Immediatel y			
Pn168	320C	Turns for PJOG1	-50 to 50	rotation	5	Immediatel y			
	-								
Pn169	320D	Max Speed for PJOG1	100 to 3000	rpm	1000	Immediatel y			
	-								
Pn170	320E	Acc./Dec. Time for PJOG1	50 to 2000	ms	500	Immediatel y			
	_								
Pn171	320F	Stop Time for PJOG1	100 to 10000	ms	1000	Immediatel y			
	-								

No.	Index	Name	Range	Unit	Default	When Enabled			
	3210	Turns for Inertia Identification	0 to 1	_	0	Immediatel y			
Pn172	To set the turns towards the forward direction in Inertia Identification operation. [0] 8 rotations. [1] 4 rotations. The number of turns the motor runs in the positive direction when offline inertia is identified								
Pn173	3211	Frequency of Vibration Suppression Filter	100 to 2000	Hz	2000	Immediatel y			
_	ı								
Pn174	3212	Adjust Bandwidth of Vibration Suppression Filter	1 to 100	-	30	Immediatel y			
	ı								
Pn175	3213	Vibration Suppression	0 to 500	-	100	Immediatel y			
	ı								
Pn176	3214	Lowpass Filter Time for Vibration Suppression	0 to 50	0.1ms	0	Immediatel y			
	ı								
Pn177	3215	Highpass Filter Time for Vibration Suppression	0 to 1000	0.1ms	1000	Immediatel y			
Pn178	3216	Damping of Vibration Suppression Filter	0 to 500	_	100	Immediatel y			
_	ı								
Pn179	3217	Amplitude Threshold for Vibration Detection	5 to 500	_	100	Immediatel y			
	This parameter is used for automatic vibration suppression.								
Pn180	3218	Frequency Threshold for Vibration Detection	0 to 100	Hz	100	Immediatel y			
	This para	ameter is used for automatic v	ibration suppressi	ion.					

No.	Index	Name	Range	Unit	Default	When Enabled			
Pn181	3219	Frequency of Notch Filter 1	50 to 5000	Hz	5000	Immediatel y			
	ı								
Pn182	321A	Depth of Notch Filter 1	0 to 23	_	0	Immediatel y			
	ı								
Pn183	321B	Width of Notch Filter 1	0 to 15	-	2	Immediatel y			
	-								
Pn184	321C	Frequency of Notch Filter 2	50 to 5000	Hz	5000	Immediatel y			
	Ι								
Pn185	321D	Depth of Notch Filter 2	0 to 23	-	0	Immediatel y			
	ı								
Pn186	321E	Width of Notch Filter 2	0 to 15	-	2	Immediatel y			
	-								
Pn187	321F	Frequency of Notch Filter 3	50 to 5000	Hz	5000	Immediatel y			
	-								
Pn188	3220	Depth of Notch Filter 3	0 to 23	_	0	Immediatel y			
	ı								
Pn189	3221	Width of Notch Filter 3	0 to 15	_	2	Immediatel y			
	-								
D=200	322C	PG Frequency Division	16 ~ 16384	pulse	16384	Immediatel y			
Pn200		oder outputs orthogonal differoutput by the analog encoder fo				quadrature			

No.	Index	Name	Range	Unit	Default	When Enabled			
Pn228	30A9	Multiturn limit	0 to 65535	1 rev	100	After restart			
	The value of Pn228 minus 1 is the setting for the multiturn limit setting.								
	3294	Inner Speed Reference	-6000 to 6000	rpm	500	Immediatel y			
Pn304	To set the inner Motor speed reference. This setting is available when servo is in inner speed control mode (Pn006.0 = 0 and Pn005.1 = 1).								
	3295	Jogging Speed	0 to 6000	rpm	500	Immediatel y			
Pn305	To set a speed for the Motor in JOG operation, and the rotation direction is determined by the reference.								
Pn306	3296	Soft Start Acceleration Time	0 to 10000	ms	0	Immediatel y			
	To set ramp acceleration time per 1000 rpm.								
Pn307	3297	Soft Start Deceleration Time	0 to 10000	ms	0	Immediatel y			
	To set ramp deceleration time per 1000 rpm.								
Pn308	3298	Speed Reference Filter Time	0 to 10000	ms	0	Immediatel y			
	To set speed reference filter time.								
Pn309	3299	S-Curve Rise Time	0 to 10000	ms	0	Immediatel y			
	To set a rise time for transiting from one speed point to another speed point in the S-curve.								
	329A	Speed Reference Smooth Mode Selection	0 to 3	_	0	After restart			
Pn310	[0] Ramp [1] S-Curve [2] Primary filtering [3] Secondary filtering								
Pn311	329B	S-Curve Selection	0 to 3	_	0	After restart			
	To set th	ne transition form of the S-cur	ve.						

No.	Index	Name	Range	Unit	Default	When Enabled			
Pn323	32A7	Overspeed Detection Threshold	1 to 8000	_	8000	Immediatel y			
	A03 alarm occurs if the Motor velocity exceeds this threshold.								
Pn332	32B0	Touch Probe Digital Input Filtering Time	0 to 1000	10ns	0	Immediatel y			
	-								
Pn401	32F5	Forward Internal Torque Limit	0 to 350	%	350	Immediatel y			
	-								
Pn402	32F6	Reverse Internal Torque Limit	0 to 350	%	350	Immediatel y			
	_								
Pn403	32F7	Forward External Torque Limit	0 to 350	%	100	Immediatel y			
	_								
Pn404	32F8	Reverse External Torque Limit	0 to 350	%	100	Immediatel y			
Pn405	32F9	Reverse Brake Torque Limit	0 to 350	%	300	Immediatel y			
	-								
Pn406	32FA	Torque Limit at Main Circuit Voltage Drop	0 to 100	%	50	Immediatel y			
111100	_								
Pn407	32FB	Release Time for Torque Limit at Main Circuit Voltage Drop	0 to 1000	ms	100	Immediatel y			
	_								
Pn408	32FC	Speed Limit during Torque Control	0 to 6000	rpm	1500	Immediatel y			
	_								

No.	Index	Name	Range	Unit	Default	When Enabled		
DE00	3358	Position Arrival Tolerance	0 to 50000	1 pulse	10	Immediatel y		
Pn500		IN (Positioning Completion) ou this setting.	tput signal will tu	ırn ON whe	n the deviation	counter is		
	3359	Speed Arrival Tolerance	0 to 100	rpm	10	Immediatel y		
Pn501		MP (Speed Coincidence Detect the speed reference and spee				riation		
	335B	Rotation Status Detection Threshold	0 to 3000	rpm	20	Immediatel y		
Pn503	It is considered the Motor has been rotated stably and the /TGON (Rotation Detection) output signal turns ON when the Motor speed exceeds this setting.							
	335C	Position Deviation Counter Overflow Threshold	1 to 83886080	1 pulse	41943040	Immediatel y		
Pn504	It is considered the deviation counter has been overflowed and an alarm signal outputs when the deviation counter exceeds this setting. NOTE: the default setting depends on the encoder resolution.							
	335D	Servo ON Waiting Time	-2000 to 2000	ms	0	Immediatel y		
Pn505	Parameters from Pn505 to Pn508 are available only when the /BK (Brake Output) signal turns ON. They are used for controlling the holding brake, so that the moving part of the machine cannot move due to gravity or an external force. • If this setting is a positive number, when the servo is ON, the /BK signal will turn ON firstly, and wait for this setting time, then excite the Motor. • If the setting is a negative number, when the servo is ON, the Motor can be excited immediately, and wait for this setting time, then the /BK signal will turn ON.							
Pn506	335E	Servo OFF Waiting Time	0 to 500	10 ms	0	Immediatel y		
PIIJUU	When the Motor is stopped, the /BK signal turns OFF as soon as the Servo is OFF. Use this setting to change the timing to turn OFF power supply to the Motor after the Servo is OFF.							
Pn507	335F	Brake Enable Speed Threshold	10 to 100	rpm	100	Immediatel y		
FIIDU/	The /BK OFF.	signal will turn ON when the A	Notor speed is low	er than thi	s setting after t	he Servo is		

Pn508 The /BK signal will turn ON when the delay exceeds this setting after the Servo is OFF. The /BK signal tunes ON as long as one of the conditions, Brake Reference Waiting Speed ar Brake Reference Waiting Time, is satisfied. 3361 Digital Input Signal Allocations 1 Pn509.0: Allocate signal to CN1-14 O S-ON 1 P-OT 2 N-OT 3 P-CL 4 N-CL 5 G-SEL 6 HmRef 7 Remote Pn509.1: Allocate signal to CN1-15 O to 7: same as the allocation of CN1-14. Pn509.2: Allocate signal to CN1-16 O to 7: same as the allocation of CN1-14.	No.	Index	Name		Range	Unit	Default	When Enabled	
Pn509 Pn509 Pn509 Pn509 Pn509 Pn509 Pn509.1: Allocate signal to CN1-15 O to 7: same as the allocation of CN1-14. Pn509.3: Allocate signal to CN1-14		3360	Brake Enable Waitir	ng Time	10 ~ 100	10 ms	50	Immediatel y	
Pn509.0: Allocate signal to CN1-14 O S-ON 1 P-OT 2 N-OT 3 P-CL 4 N-CL 5 G-SEL 6 HmRef 7 Remote Pn509.1: Allocate signal to CN1-15 O to 7: same as the allocation of CN1-14. Pn509.2: Allocate signal to CN1-16 O to 7: same as the allocation of CN1-14.	Pn508	The /BK	The /BK signal tunes ON as long as one of the conditions, Brake Reference Waiting Speed and						
Pn509.0: Allocate signal to CN1-14 0 S-ON 1 P-OT 2 N-OT 3 P-CL 4 N-CL 5 G-SEL 6 HmRef 7 Remote Pn509.1: Allocate signal to CN1-15 0 to 7: same as the allocation of CN1-14. Pn509.2: Allocate signal to CN1-16 0 to 7: same as the allocation of CN1-14.		3361			0000 to 7777	_	3210		
I I I I I I I I I I I I I I I I I I I	Pn509			0 S-ON 1 P-O 2 N-O 3 P-CI 4 N-CI 5 G-SI 6 HmF 7 Rem Pn509.1: 0 to 7: sa Pn509.3: 0 to 7: sa	T T T C C C C C C C C C C C C C C C C C	o CN1-15 tion of CN1 o CN1-16 tion of CN1	-14.		
8 EXT1 9 EXT2									

No.	Index	Name		Range	Unit	Default	When Enabled	
	3362	Digital Input Si Allocations 2	gnal		0000 to 0007	_	0004	After restart
Pn510	H		Pn5 0 1 2 3 4 5 6 7 8 9	S-ON P-O ⁻ N-O ⁻ P-CL N-CI G-SE HmF EXT ⁻ EXT ⁻	T T EL Ref note	(Do not ch		
			Pn5	10.3:	Reserved setting	(Do not ch	ange).	

No.	Index	Name	Range	Unit	Default	When Enabled		
	3363	Digital Output Signal Allocations	0000 to 0bbb	_	0210	After restart		
Pn511		0 0 1 1 1 1 2 5 3 6 4 E 5 F 6 0 7 F 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	.0: Allocate signal to OIN/VCMP GON -RDY LT K GC T D CR emote0 emote1 .1: Allocate signal to same as the allocate setting contents.	to CN1-10, 1 ation of CN1	-6, 7. ange).			
Pn512	3364	Digital Input Signals (Low Bits) from Bus Master	0000 to 1111	_	0000	After restart		
	Use the bit-16 to bit-23 in the sub-index 01 of the object 0x60FE in CiA402 as the inputs, corresponding to CN1-14 to CN1-17.							
Pn513	3365	Digital Input Signals (High Bits) from Bus Master	0000 to 1111	_	0000	After restart		
LII313	Use the bit-24 in the sub-index 01 of the object 0x60FE in CiA402 as the input, corresponding to CN1-18.							

No.	Index	Name		Range	Unit	Default	When Enabled		
Pn514	3366	Digital Input Signals Time	Filter	0 to 1000	1 cycle	1	Immediatel y		
PIIST4	To set a filtering time for the input signals. If you increase this setting, the signal changes on the input port will be delayed.								
	3367	Alarm Output Signal Time	l Filter	0 to 3	2 cycle	1	Immediatel y		
Pn515		filtering time for the crease this setting, th							
	3368	Digital Input Signal I 1	Inverts	0000 to 1111	_	0000	After restart		
Pn516			0 The 1 The Pn516.1: 0 The 1 The Pn516.2: 0 The	CN1-14 inverse so signal is not inverse so signal is inverted CN1-15 inverse so signal is not inverse so signal is inverted CN1-16 inverse so signal is not inverse so signal is not inverse so signal is not inverse so signal is inverted	election rted election rted.				
			<u> </u>	CN1-17 inverse so					
				signal is inverted					

No.	Index	Name		Range	Unit	Default	When Enabled	
	3369	Digital Input 2	Signal Inverts	0000 to 0001	_	0000	After restart	
Pn517	& !		Pn517.0: 0 The 1 The Pn517.1:					
Pn518	336A	Dynamic Bra	king Time	50 ~ 20000	0.5ms	20000	Immediatel y	
	The time required for dynamic braking of the motor.							
Pn519	336B	Serial Encode Communicat Tolerance		0 to 10000	1 cycle	3	Immediatel y	
	The warning of serial encoder related alarms can be ignored if the alarms occurred within this setting.						d within this	
Pn520	336C	Position Arriv Detection Ti	val Status me Threshold	0 to 60000	0.1 ms	500	Immediatel y	
	To set a required time for completing the positioning.							

No.	Index	Name	Range	Unit	Default	When Enabled
Pn521	336D	Alarm Masks	0000 to 0011		0 0 1 1 (4 0 0 W a n d b e l o W) 0 0 1 0 (o t h e r p o w e r)	After restart

No.	Index	Name		Range	Unit	Default	When Enabled	
	5 <i>l</i>		and A.1	: A15 alarm mask b 6 use the same a d above, A.15 uses	larm mask	bit Pn521.0; fo	or drives of	
			0 Do	not mask.				
		1 Mask (when A15 is masked, the bleeder resistor will not work even if a bleeder battery is connected)						
			Pn521.1	: A06 Mask				
			0 Do	not mask.				
			1 Ign	ore the alarm.				
			Pn521.2	: Reserved setting	(Do not cha	ange).		
			Pn521.3	: Reserved setting	(Do not cha	ange).		
	3371	Motor Overload De Start Threshold	etection	100 to 150	%	100	Immediatel y	
Pn525	7							

No.	Index	Name		Range	Unit	Default	When Enabled		
	3374	Digital Output Signal Inverts		0000 to 1111	_	0000	Immediatel y		
Pn528	5 1		0 The 1 The Pn516.1: 0 The 1 The	CN1-6, 7 inverse signal is not inverse contact and is inverted. CN1-8, 9 inverse signal is not inverse signal is inverted. Reserved setting	selection rted.	ange).			
	Pn516.3: CN1-12, 13 inverse selection								
				Not inverted					
			1 Inve	1 Inverted					
Pn529	Torque Reaches Status Detection Torque Threshold			3 to 300	%	100	Immediatel y		
FIIJZ9	When the torque output exceeds the setting of Pn529 and the time is greater than the setting of Pn530, the /TCR (Torque Limit Detection Output) signal turns ON.								
Pn530	3376	Torque Reaches St Detection Time Th		1 to 1000	ms	10	Immediatel y		
FIIDOU	When the torque output exceeds the setting of Pn529 and the time is greater than the settin of Pn530, the /TCR (Torque Limit Detection Output) signal turns ON.								
D. 535	337B	Discharging Resisto Resistance	or	10 to 300	Ω	_	After restart		
Pn535	To set the resistance value for the braking. This setting is not reset when the default setting is restored.								
	337C	Discharging Resisto	or Power	0 to 2000	w	-	After restart		
Pn536	To set the power value for the braking resistor. This setting is not reset when the default setting is restored.								

No.	Index	Name	Range	Unit	Default	When Enabled			
	337E	Momentary Power Interruption Hold Time	0 to 50	1 cycle	1	Immediatel y			
Pn538	Even if the main power supply to the Drive is interrupted momentarily, power supply to the Motor (servo ON status) will be maintained for the time set by this parameter. The setting is a number of periods, and the time of one period depends on the setting of Pn007.3: • Pn007.3=0, the time of one period is 1/50s. • Pn007.3=1, the time of one period is 1/60s.								
Pn541	3381	Current Threshold for Detecting Abnormal Operation	0 to 400	% In	200	Immediatel y			
	Set a percentage threshold for the current to detect that the Motor has been operating abnormally.								
Pn542	3382	Acceleration Threshold for Detecting Abnormal Operation	0 to 1000	krpm/s	50	Immediatel y			
	Set a threshold for the acceleration to detect that the Motor has been operating abnormally.								
Pn600	33BC	PSO Position Value Resolution	0 ~ 10	-	7	After restart			
	The number of pulses accumulated by the PSO position value for one revolution of the motor								

No.	Index	Name		Range	Unit	Default	When Enabled	
	33BD	PSO Mode Setting		b0000 ~ b0011	_	0	Immediatel y	
Pn601			0 Absort	Incremental PSO n601.1: Number of PSO Single comparison Cyclic comparison n601.2: Reserved eserved				
	33BE	PSO Output Polar	ity	0 ~ 1	_	0	After restart	
Pn602	PSO output polarity 0: Initial level is low, while active level is high 1: Initial level is high, while active level is low							
	33BF	PSO Output Form		0 ~ 1	_	0	After restart	
Pn603	PSO Output Form 0: Pulse output 1: Level output							
	33C0	PSO Output Pulse	Width	0 ~ 10000	us	100	Immediatel y	
Pn604	Pulse output width Ranged from 1 to 10,000, in 100us.							

No.	Index	Name	Range	Unit	Default	When Enabled				
	33C1	Delay Compensation Time	0 ~ 200	us	0	Immediatel y				
Pn605	-	Delay compensation time Ranged from 0 to 200, in 1us.								
Pn606	33C2	PSO Origin Bias	-2147483648 ~ 2147483647	pulse	0	Immediatel y				
PIIOUO		ting the Origin, the current poron -2147483648 to 214748364		is updated	to the Origin Bi	as value,				
Pn607	33C3	PSO Starting Point	1~8	-	1	Immediatel y				
	The star	ting comparison point of PSO								
Pn608	33C4	PSO Ending Point	1~20	_	8	Immediatel y				
	The endi	ng comparison point of PSO								
	33C5	Attribute of PSO1 Comparison Point 1	0~6	-	0	Immediatel y				
Pn609	①When the output mode is pulse output 0: Comparison logic skips the point 1: Traverses forward the comparison point and outputs 2: Traverses backward the comparison point and outputs 3: Reverses the comparison point forward and backward and outputs 4-6: Comparison logic skips the point ②When the output mode is level output 0: Comparison logic skips the point 1: Traverses forward the comparison point and outputs; the output level is active 2: Traverses backward the comparison point and outputs; the output level is active 3: Forward and reverse crossing of the comparison point and outputs; the output level is active 4: Traverses forward the comparison point and outputs; output level is initial one 5: Traverses backward the comparison point and outputs; the output level is the initial one 6: Traverses the comparison point forward and backward and outputs; the output level is the									
Pn610	33C6	Target Position of PSO1 Comparison Point 1	-2147483648 ~ 2147483647	-	0	Immediatel y				
	The target position of PSO1 Comparison Point 1									
Pn611	33C7	Attribute of PSO1 Comparison Point 2	0~6	_	0	Immediatel y				
	The same as Pn609									

No.	Index	Name	Range	Unit	Default	When Enabled			
Pn612	33C8	Target Position of PSO1 Comparison Point 2	-2147483648 ~ 2147483647	_	0	Immediatel y			
	The target position of PSO1 Comparison Point 2								
Pn613	33C9	Attribute of PSO1 Comparison Point 3	0~6	_	0	Immediatel y			
	The sam	e as Pn609							
Pn614	33CA	Target Position of PSO1 Comparison Point 3	-2147483648 ~ 2147483647		0	Immediatel y			
	The targ	et position of PSO1 Compariso	n Point 3						
Pn615	33CB	Attribute of PSO1 Comparison Point 4	0~6	-	0	Immediatel y			
	The same as Pn609								
Pn616	33CC	Target Position of PSO1 Comparison Point 4	-2147483648 ~ 2147483647	_	0	Immediatel y			
	The target position of PSO1 Comparison Point 4								
Pn617	33CD	Attribute of PSO1 Comparison Point 5	0~6	-	0	Immediatel y			
	The same as Pn609								
Pn618	33CE	Target Position of PSO1 Comparison Point 5	-2147483648 ~ 2147483647	_	00	Immediatel y			
	The target position of PSO1 Comparison Point 5								
Pn619	33CF	Attribute of PSO1 Comparison Point 6	0~6	_	0	Immediatel y			
	The sam	e as Pn609							
Pn620	33D0	Target Position of PSO1 Comparison Point 6	-2147483648 ~ 2147483647	_	0	Immediatel y			
	The targ	et position of PSO1 Compariso	n Point 6						
Pn621	33D1	Attribute of PSO1 Comparison Point 7	0~6	-	0	Immediatel y			
	The same as Pn609								

No.	Index	Name	Range	Unit	Default	When Enabled			
Pn622	33D2	Target Position of PSO1 Comparison Point 7	-2147483648 ~ 2147483647	_	0	Immediatel y			
	The target position of PSO1 Comparison Point 7								
Pn623	33D3	Attribute of PSO1 Comparison Point 8	0~6	_	0	Immediatel y			
	The sam	e as Pn609							
Pn624	33D4	Target Position of PSO1 Comparison Point 8	-2147483648 ~ 2147483647			Immediatel y			
	The targ	et position of PSO1 Compariso	n Point 8						
Pn704	3424	Device Node Number	0 to 127	-	1	After restart			
	To set the device node number in EtherCAT communication.								
Pn720	3434	Homing Method	1 to 35	_	1	Immediatel y			
	Mapping to the object 6098h in CiA402.								
Pn721	3435	Speed during Search for Switch	1 to 2147483647	0.1 rpm	5000	Immediatel y			
	Mapping to the object 6099-01h in CiA402.								
Pn722	3436	Speed during Search for Zero	1 to 2147483647	0.1 rpm	100	Immediatel y			
	Mapping to the object 6099-02h in CiA402.								
Pn723	3437	Homing Acceleration	1 to 2147483647	0.1 rpm/s	1000000	Immediatel y			
	Mapping	to the object 609Ah in CiA402							
Pn724	3438	Home Offset	-2147483648 to 2147483647	1 pulse	0	Immediatel y			
	Mapping	to the object 607Ch in CiA402							
Pn725	3439	Electronic Gear Ratio (Numerator)	1 to 1073741824	_	1	Immediatel y			
	Mapping to the object 6093-01h in CiA402.								

No.	Index	Name	Range	Unit	Default	When Enabled
Pn726	343A	Electronic Gear Ratio (Denominator)	1 to 1073741824	_	1	Immediatel y
	Mapping	to the object 6093-02h in CiA	402.			

Chapter 12 Object Dictionary

12.1 General Objects

Device Type (1000h)

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
1000h	0	Device Type	UINT32	RO	No	0x00020192

The data description is as following.

Bit	Data	Description
0 to 15	Device profile number	0192 (DS402)
16 to 31	Additional information	0002 (Servodrive)

Error Register (1001h)

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value	Ì
1001h	0	Error Register	UINT8	RO	No	0x00000000	ĺ

The data description is as following.

Bit	Data	M / O
0	Generic error	М
1	Current.	0
2	Voltage.	0
3	Temperature.	0
4	Communication error (timeout, error status).	0
5	Device specification specified.	0
6	Reserved (always 0b).	0
7	Manufacturer specified.	0

Pre-defined error field (1003h)

Inde	ex	Subindex	Name	Data Type	Access	PDO Mapping	Value
100	3h	0	Number of entries	USINT	RO	No	_ (1)

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	1	Error field 1	UDINT	RO	No	_
	2	Error field 2	UDINT	RO	No	_
	3	Error field 3	UDINT	RO	No	-
	4	Error field 4	UDINT	RO	No	_
	5	Error field 5	UDINT	RO	No	-
	6	Error field 6	UDINT	RO	No	-
	7	Error field 7	UDINT	RO	No	-
	8	Error field 8	UDINT	RO	No	_

^{(1):} This value indicates the maximum number of times the alarm occurs when the servo is turned on, and the maximum value is 8.

The data description is as following.

Bit	Data	Description
0 to 15	Error code	Alarm No.
16 to 31	Additional information	Emergency code which is relative to the error code.

Store parameters (1010h)

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Highest subindex supported	UINT8	RO	NO	ı
1010b	1	Reserved	UINT32	RO	NO	-
1010h	2	Reserved	UINT32	RO	NO	_
	3	Save application parameters	UINT32	RW	NO	ı

Save the value of the object into the relevant parameter by writing a specific signature to 1010-03h. So that, the servo can load the value of the parameter to the relevant object as an initial value.

The signature is save.

	LSB			
character	е	v	a	s
hex	65h	76h	61h	73h

The relationship between Index and Parameter State by saving is described as below.

Index	Data	Relevant Parameter
607C-00h	Home offset	Pn724
6093-01h	numerator	Pn725
6093-02h	divisor	Pn726
6098-00h	Homing method	Pn720
6099-01h	Speed during search for switch	Pn721
6099-02h	Speed during search for zero	Pn722
609A-00h	Homing acceleration	Pn723

In the case of 1010-03h, the data description is as following.

Bit	Data	Description
0	Cmd	Ob: CANopen device does not save parameters autonomously
U	Cmd	1b: CANopen device saves parameters autonomously
4	Auto	Ob: CANopen device does not save parameters on command
1	Auto	1b: CANopen device saves parameters on command
2 to 31	Reserved	00 0000 0000 0000 0000 0000 0000

NOTE: Commands that save objects to FRAM can only be executed when it is not in Servo ON state. Save Autonomously means you don't need to write save to the object when the slave saves the object value to FRAM.

Identity Object (1018h)

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Number of entries	USINT	RO	NO	4
	1	Vendor ID	UDINT	RO	NO	0x0000060A
1018h	2	Product code	UDINT	RO	NO	0x0000ED31
	3	Revision number (1)	UDINT	RO	NO	-
	4	Serial number (2)	UDINT	RO	NO	0x00000000

^{(1):} The revision number is stored as follows:

The major version identifies a specific CANopen over EtherCAT (CoE) behavior. If the CoE functionality is expanded, the major version has to be increased. The minor version number identifies different versions with the same behavior.

(2): Serial number is not used (always 0).

12.2 PDO Mapping Objects

The CANopen over EtherCAT (CoE) protocol allows the user to map objects to process data objects (PDOs) in order to use the PDOs for real-time data transfer.

Objects can be combined in PDO data via PDO Mapping and PDO Assignment.

The data description of PDO Mapping Objects is as following.

Bit	Data	Description
0 to 7	Length	-
8 to 15	Sub-Index	-
16 to 31	Object index	-

The objects mapped to PDOs can be changed only when the EtherCAT (CoE) Network Module is in the Pre-Operational state.

There are 4 receiving PDOs (RxPDOs) and 4 transmit PDOs (TxPDOs). Each PDO Mapping can be assigned up to 8 objects, and the total assignment is not more than 32 bytes.

The procedure of PDO mapping is as following:

- 1. Disable the assignments between the Sync Manager and PDOs: Set subindex 00h in objects 1C12h and 1C13h to 0.
- 2. Disable the assignments of PDOs: Set subindex 00h in objects (1600h to 1603h) and (1A00h to 1A03h) to 0.
- 3. Set all of the mapping entries for the PDO mapping objects: Set objects (1600h to 1603h) and (1A00h to 1A03h).
- 4. Set the number of mapping entries for the PDO mapping objects: Set subindex 00h in objects (1600h to 1603h) and (1A00h to 1A03h).
- 5. Set the assignments between the Sync Manager and PDOs: Set subindex 01h in objects 1C12h and 1C13h.
- 6. Enable the assignments between the Sync Manager and PDOs: Set subindex 00h in objects 1C12h and 1C13h to 1.

1st Receive PDO Mapping

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Number of entries	USINT	RW	NO	2
	1	Mapping entry 1	UDINT	RW	NO	0x60400010
	2	Mapping entry 2	UDINT	RW	NO	0x60FF0020
	3	Mapping entry 3	UDINT	RW	NO	_
1600h	4	Mapping entry 4	UDINT	RW	NO	_
	5	Mapping entry 5	UDINT	RW	NO	_
	6	Mapping entry 6	UDINT	RW	NO	_
	7	Mapping entry 7	UDINT	RW	NO	_
	8	Mapping entry 8	UDINT	RW	NO	_

2nd Receive PDO Mapping

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Number of entries	USINT	RW	NO	2
	1	Mapping entry 1	UDINT	RW	NO	0x60400010
	2	Mapping entry 2	UDINT	RW	NO	0x60FF0020
	3	Mapping entry 3	UDINT	RW	NO	_
1601h	4	Mapping entry 4	UDINT	RW	NO	_
	5	Mapping entry 5	UDINT	RW	NO	_
	6	Mapping entry 6	UDINT	RW	NO	-
	7	Mapping entry 7	UDINT	RW	NO	_
	8	Mapping entry 8	UDINT	RW	NO	_

3rd Receive PDO Mapping

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Number of entries	USINT	RW	NO	4
	1	Mapping entry 1	UDINT	RW	NO	0x60400010
	2	Mapping entry 2	UDINT	RW	NO	0x60FF0020
	3	Mapping entry 3	UDINT	RW	NO	0x60B80010
1602h	4	Mapping entry 4	UDINT	RW	NO	0x60FE0120
	5	Mapping entry 5	UDINT	RW	NO	_
	6	Mapping entry 6	UDINT	RW	NO	_
	7	Mapping entry 7	UDINT	RW	NO	_
	8	Mapping entry 8	UDINT	RW	NO	_

4th Receive PDO Mapping

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Number of entries	USINT	RW	NO	1
	1	Mapping entry 1	UDINT	RW	NO	0x60400010
1603h	2	Mapping entry 2	UDINT	RW	NO	_
	3	Mapping entry 3	UDINT	RW	NO	_
	4	Mapping entry 4	UDINT	RW	NO	_

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	5	Mapping entry 5	UDINT	RW	NO	_
	6	Mapping entry 6	UDINT	RW	NO	_
	7	Mapping entry 7	UDINT	RW	NO	_
	8	Mapping entry 8	UDINT	RW	NO	_

1st Transmit PDO Mapping

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Number of entries	USINT	RW	NO	3
	1	Mapping entry 1	UDINT	RW	NO	0x60410010
	2	Mapping entry 2	UDINT	RW	NO	0x606C0020
	3	Mapping entry 3	UDINT	RW	NO	0x60770010
1A00h	4	Mapping entry 4	UDINT	RW	NO	_
	5	Mapping entry 5	UDINT	RW	NO	_
	6	Mapping entry 6	UDINT	RW	NO	-
	7	Mapping entry 7	UDINT	RW	NO	_
	8	Mapping entry 8	UDINT	RW	NO	_

2nd Transmit PDO Mapping

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Number of entries	USINT	RW	NO	3
	1	Mapping entry 1	UDINT	RW	NO	0x60410010
	2	Mapping entry 2	UDINT	RW	NO	0x606C0020
	3	Mapping entry 3	UDINT	RW	NO	0x60770010
1A01h	4	Mapping entry 4	UDINT	RW	NO	_
	5	Mapping entry 5	UDINT	RW	NO	_
	6	Mapping entry 6	UDINT	RW	NO	_
	7	Mapping entry 7	UDINT	RW	NO	_
	8	Mapping entry 8	UDINT	RW	NO	_

3rd Transmit PDO Mapping

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Number of entries	USINT	RW	NO	8
	1	Mapping entry 1	UDINT	RW	NO	0x60410010
	2	Mapping entry 2	UDINT	RW	NO	0x60640020
	3	Mapping entry 3	UDINT	RW	NO	0x60770010
1A02h	4	Mapping entry 4	UDINT	RW	NO	0x60F40020
	5	Mapping entry 5	UDINT	RW	NO	0x60B90010
	6	Mapping entry 6	UDINT	RW	NO	0x60BA0020
	7	Mapping entry 7	UDINT	RW	NO	0x60BC0020
	8	Mapping entry 8	UDINT	RW	NO	0x60FD0020

4th Transmit PDO Mapping

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Number of entries	USINT	RW	NO	1
	1	Mapping entry 1	UDINT	RW	NO	0x60410010
(2	Mapping entry 2	UDINT	RW	NO	_
	3	Mapping entry 3	UDINT	RW	NO	_
1A03h	4	Mapping entry 4	UDINT	RW	NO	_
	5	Mapping entry 5	UDINT	RW	NO	_
	6	Mapping entry 6	UDINT	RW	NO	_
	7	Mapping entry 7	UDINT	RW	NO	_
	8	Mapping entry 8	UDINT	RW	NO	_

Sync Manage2 PDO Assignment

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Number of assigned PDOs	USINT	RW	NO	1
1C12h	1	Index of assigned RxPDO 1	UINT16	RW	NO	0x1602
	2	Index of assigned RxPDO2	UINT16	RW	NO	0x0000

Sync Manage3 PDO Assignment

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Number of assigned PDOs	USINT	RW	NO	1
1C13h	1	Index of assigned TxPDO	UINT16	RW	NO	0x1A02
	2	Index of assigned TxPDO 2	UINT16	RW	NO	0x0000

12.3 Parameters Table

SinglePos (30A5h)

Index	Subindex	ubindex Name I		Access	PDO Mapping	Value
30A5h	0 SinglePos		UINT32	RO	TxPDO	0x0000

MultiPos (30A6h)

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
30A6h	0	MultiPos	UINT32	RO	TxPDO	0x0000

Pn000 Basic Function Selections 0 (3164h)

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
3164h	0	Pn000 Basic Function Selections 0	INT32	RW	No	0x0000

NOTE: Other parameters are the same as 3164h, refers to Chapter 11Parameters.

12.4 Device Control

Error Code (603Fh)

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
603Fh	0	Error Code	UINT16	RO	TxPDO	0x0000

Bit	Data	Description
0 to 7	Alarm No	The alarm number that corresponds to the axis.
8 to 15	Axis No	The axis number of the Servo, sorted from 0.

Controlword (6040h)

This object controls the device and operation mode.

Index	Subindex	Name	Data Type	Access	PDO Mapping		Value
6040h	0	Controlword	UINT16	RW	Yes		0x0000

Bit	Data	Description
0	Switch on	-
1	Enable voltage	_
2	Quick stop	-
3	Enable operation	-
4 to 6	Operation mode specific	_
7	Fault reset	_
8	halt	_
9, 10	Reserved	_
11 to 15	Manufacture specific	_

Bit0 to Bit3, and Bit7: These bits function as the control command for the Servo Drive's state.

Command	Bit of the controlword					
Command	Bit7	Bit3	Bit2	Bit1	Bit0	Transitions
Shutdown	0	_	1	1	0	2, 6, 8
Switch on	0	0	1	1	1	3*

Command	Bit of the controlword							
Command	Bit7	Bit3	Bit2	Bit1	Bit0	Transitions		
Switch on	0	1	1	1	1	3**		
Disable voltage	0	1	_	0	1	7, 9, 10, 12		
Quick stop	0	_	0	1	_	7, 9, 10, 11		
Disable operation	0	0	1	1	1	5		
Enable operation	0	1	1	1	1	4, 16		
Fault reset		_	_	-	5	15		

The description of Bit4 and Bit5 in PP mode is as following.

Bit5	Bit4	Description
0	0 → 1	Start the next positioning after the current positioning completes (target reached)
1	0 → 1	Start the next positioning immediately

The description of Bit6 and Bit8 in PP mode is as following.

Bit	Data	Value	Description		
6 Abs / rel		0	Regards the target position as an absolute value		
6	ADS 7 Tel	1	Regards the target position as a relative value		
0	8 Halt	0	Executes or continues positioning		
8 H		1	Stops the axis according to Halt Option Code (605Dh)		

The description of Bit4, Bit5, Bit6 and Bit8 in HM mode is as following.

Bit	Data	Value	Description				
_	Homing	0	Does not start homing				
4	4 operation start 1		Starts or continues homing				
5	-	0	Reserved				
8	_	0	Reserved				
8	8 Halt		Enables Bit4				
O	Halt	1	Stops the axis according to Halt Option Code (605Dh)				

The description of Bit4, Bit5, Bit6 and Bit8 in CSP, CSV or CST mode is as following.

Bit	Data	Value	Description
4	_	0	Reserved
5	_	0	Reserved
6	_	0	Reserved
8 Halt	0	Executes or continues operation.	
0	Halt	1	Stops the axis according to Halt Option Code (605Dh)

The description of Bit4, Bit5, Bit6 and Bit8 in IP mode is as following.

Bit	Data	Value	Description
4	∡ Enable		Disables interpolation
4	interpolation	1	Enables interpolation
5	-	0	Reserved
8	_	0	Reserved
Q	8 Halt		Enables Bit4
0	Παιι	1	Stops the axis according to Halt Option Code (605Dh)

The description of Bit4, Bit5, Bit6 and Bit8 in PV mode is as following.

Bit	Data	Value	Description			
4	-	0	Reserved			
5	-	0	Reserved			
6	-	0	Reserved			
8 Halt	0	Executes or continues operation.				
0	8 Halt		Stops the axis according to Halt Option Code (605Dh)			

Statusword (6041h)

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value	
6041h	0	Statusword	UINT16	RO	TxPDO	0x0000	

Bit	Data	Description
0	Ready	-
1	Switched on	-
2	Running	-

Bit	Data	Description
3	Fault	-
4	Voltage enabled	-
5	Quick stop	-
6	No Fault	-
7	Warning	-
8	Reserved	-
9	Remote	-
10	Target reached	-
11	Internal limit active	-
12, 13	Operation mode specific	-
14	Reserved	-
15	Homeflag	-

Bit0 to Bit7: Current State of Servo Drive:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Servo State
_	0	1	Í.	0	0	0	0	Initialization
_	1	1	-	0	0	0	0	No Fault
-	0	1	И	0	0	0	1	Ready
-	0	1	1	0	0	1	1	Switched on
-	0	1	1	0	1	1	1	Running
-	0	0		0	1	1	1	Quick Stop
-	0	ı	+	1	1	1	1	Stop at Fault
_	0	1	-	1	0	0	0	Fault
_	-	-	1	_	_	_	_	Main Power On
1	-	-	_	_	_	_	_	Warning occurs

Bit11: The internal limit is activated (set to 1) when the N-OT or P-OT signal was activated. The description of Bit10, Bit12 and Bit13 in PP mode is as following.

Bit	Data	Value	Description
10	Target reached	0	Halt (Bit 8 in Controlword) = 0: Target position not reached Halt (Bit 8 in Controlword) = 1: Axis decelerates

Bit	Data	Value	Description	
	1		Halt (Bit 8 in Controlword) = 0: Target position reached Halt (Bit 8 in Controlword) = 1: Velocity of axis is 0	
12	Set-point acknowledge	0	Previous set-point already processed, waiting for new set-point	
12		1	Previous set-point still in process, set-point overwriting shall be accepted	
13	Following error	0	No following error	
		1	Following error	

The description of Bit10, Bit12 and Bit13 in HM mode is as following.

Bit13	Bit12	Bit10			
Homing error	Homing attained	Target reached	Description		
0	0	0	Homing procedure is in progress		
0	0	1	Homing procedure is interrupted or not started		
0	1	0	Homing is attained, but target is not reached		
0	1	1	Homing procedure is completed successfully		
1	0	0	Homing error occurred, velocity is not 0		
1	0	1	Homing error occurred, velocity is 0		

The description of Bit10, Bit12 and Bit13 in CSP, CSV or CST mode is as following.

Bit	Data	Value	Description	
10	Target reached	0	Reserved	
12	Drive follows the command value	0	Drive does not follow the target value (position, velocity or torque)	
		1	Drive follows the target value (position, velocity or torque)	
13	Following arror	0	No following error	
13	Following error	1	Following error	

The description of Bit10, Bit12 and Bit13 in IP mode is as following.

Bit	Data	Value	Description	
10	10 Target reached	0	Halt (Bit 8 in Controlword) = 0: Target position not reached Halt (Bit 8 in Controlword) = 1: Axis decelerates	
10		1	Halt (Bit 8 in Controlword) = 0: Target position reached Halt (Bit 8 in Controlword) = 1: Velocity of axis is 0	

Bit	Data	Value	Description	
12	IP mode	0	Interpolation inactive	
12	active	1	Interpolation active	
13	Following	0	No following error	
13	error	1	Following error	

The description of Bit10, Bit12 and Bit13 in PV mode is as following.

Bit	Data	Value	Description	
10	Target reached	0	Halt (Bit 8 in Controlword) = 0: Target position not reached Halt (Bit 8 in Controlword) = 1: Axis decelerates	
10		1	Halt (Bit 8 in Controlword) = 0: Target position reached Halt (Bit 8 in Controlword) = 1: Velocity of axis is 0	
12	42 6		Speed is not equal 0	
12	Speed	1	Speed is equal 0	
13	_	0	Reserved	

The description of Bit10, Bit12 and Bit13 in PT mode is as following.

Bit	Data	Value	Description		
10 Target reached	Target	0	Halt (Bit 8 in Controlword) = 0: Target position not reached Halt (Bit 8 in Controlword) = 1: Axis decelerates		
		1	Halt (Bit 8 in Controlword) = 0: Target position reached Halt (Bit 8 in Controlword) = 1: Velocity of axis is 0		
12	-	0	Reserved		
13	-	0	Reserved		

Quick Stop Option Code (605Ah)

This object determines what operation will be performed if a Quick Stop is executed.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
605Ah	0	Quick Stop Option Code	INT16	RW	No	0, 1, 2, 5, 6 Default:2

Value	Description
0	Disables the Servo (Servo OFF, and stops the axis according to the setting of Pn003.0)

Value	Description
1	Decelerates according to <i>Profile Deceleration</i> (6084h) for decelerating to a stop and moves to the No Fault state
2	Decelerates according to <i>Quick Stop Deceleration</i> (6085h) for decelerating to a stop and moves to the No Fault state
5	Decelerates according to <i>Profile Deceleration</i> (6084h) for decelerating to a stop and stays at the QuickStop state
6	Decelerates according to <i>Quick Stop Deceleration</i> (6085h) for decelerating to a stop and stays at the QuickStop state

Shutdown Option Code (605Bh)

This object defines the operation that is performed if there is a move from Operation Enable state to Ready state.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
605Bh	0	Shutdown Option Code	INT16	RW	No	0, 1 Default: 0

Value	Description
0	Disables the Servo (Servo OFF, and stops the axis according to the setting of Pn003.0)
1	Decelerates according to <i>Profile Deceleration</i> (6084h) for decelerating to a stop and moves to the No Fault state

Disable Operation Option Code (605Ch)

This object defines the operation that is performed if there is a move from Operation Enable state to Switched ON state.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
605Ch	0	Shutdown Option Code	INT16	RW	No	0, 1 Default: 0

Value	Description
0	Disables the Servo (Servo OFF, and stops the axis according to the setting of Pn004.0)
1	Decelerates according to <i>Profile Deceleration</i> (6084h) for decelerating to a stop and moves to the No Fault state

Halt Option Code (605Dh)

This object defines the operation that is performed if bit 8 (Halt) in Controlword is active.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
605Dh	0	Halt Option Code	INT16	RW	No	1, 2 Default: 1

Value	Description
1	Decelerates according to Profile Deceleration (6084h) for decelerating to a stop
2	Decelerates according to <i>Quick Stop Deceleration</i> (6085h) for decelerating to a stop

605Eh (Fault Reaction Option Code)

This object defines the operation that is performed when an alarm is detected in the Servo System.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
605Eh	0	Halt Option Code	INT16	RW	No	0

Value	Description
0	Disables the Servo (Servo OFF, and stops the axis according to the setting of Pn003.0)

Modes of Operation (6060h)

This object is used to select the operation mode. The Servo System gives the actual operation mode in the *Modes of Operation Display* object.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6060h	0	Modes of Operation	UINT8	RW	Yes	0 to 10 Default: 0

Value	Description		
0	There is no mode change or no mode assigned		
1	Profile Position Mode		
2	-		
3	Profile Velocity Mode		
4	Profile Torque Mode		

Value	Description
5	-
6	Homing Mode
7	Interpolated Position Mode
8	Cyclic Sync Position Mode
9	Cyclic Sync Velocity Mode
10	Cyclic Sync Torque Mode

Modes of Operation Display (6061h)

This object gives the current mode of operation.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6061h	0	Modes of Operation Display	UINT8	RO	Yes	Default: 0

Supported Drive Modes (6502h)

This object gives the operation modes that are supported by the device.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6502h	0	Supported Drive Modes	UINT32	RO	No	0x03ED

Bit	Supported mode	Definition
0	Profile Position	1: Supported
1	Vl (Velocity mode)	0: Not supported
2	PV (Profile Velocity mode)	1: Supported
3	TQ (Torque Profile mode)	1: Supported
4	Reserved	0
5	HM (Homing mode)	1: Supported
6	IP (Interpolated Position mode)	1: Supported
7	CSP (Cyclic Sync Position mode)	1: Supported
8	CSV (Cyclic Sync Velocity mode)	1: Supported
9	CST (Cyclic Sync Torque mode)	1: Supported
10 to 31	Reserved	0

12.5 Profile Position Mode

Target Position (607Ah)

This object contains the target position for the Profile Position Mode or Cyclic Sync Position Mode.

In Profile Position Mode, the value of this object is interpreted as either an absolute or relative value depending on the Abs/Rel Flag in *Controlword*. In Cyclic Sync Position Mode, the value is always interpreted as an absolute value.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
607Ah	0	Target Position	INT32	RW	Yes	Default: 0

Software Position Limit (607Dh)

This object defines the absolute positions of the limits to the target position (position demand value). Every target position is checked against these limits.

The limit positions are specified in user-defined position reference units, the same as for target positions, and are always relative to the machine home position.

The limit values are corrected internally for the home offset as given below. The target positions are compared with the corrected values.

- Corrected minimum position limit = Min position limit Home offset (607Ch)
- Corrected maximum position limit = Max position limit Home offset (607Ch)

The software position limits are enabled at the following times:

- When homing is completed
- · When an absolute encoder is connected

The software limits are enabled if Min position limit < Max position limit.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Software position limit	UINT8	RO	No	Default: 2
607Dh	1	Min position limit	INT32	RW	No	-2147483648
	2	Max position limit	INT32	RW	No	to 2147483647

Max Profile Velocity (607Fh)

This object defines the maximum speed during a Profile Mode operation.

However, the Servo will regard the minimum value between 607Fh and 6080h as the maximum speed during a Profile Mode operation.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
607Fh	0	Max Profile Velocity	UINT32	RW	Yes	Default: read from the Motor Unit: 0.1 rpm

Max Motor Speed (6080h)

This object defines the maximum speed for protecting the Motor.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6080h	0	Max Motor Speed	UINT32	RW	Yes	0 to rated speed Default: read from the Motor Unit: 1 rpm

Profile Velocity (6081h)

This object contains the final movement speed at the end of acceleration for a Profile Mode operation.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6081h	0	Profile Velocity	UINT32	RW	Yes	0 to 200000 Default: 10000 Unit: 0.1 rpm

Profile Acceleration (6083h)

This object specifies the acceleration rate for PP Mode and PV Mode.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6083h	0	Profile Acceleration	UINT32	RW	Yes	0 to 4294967295 Default: 200000 Unit: 0.1 rpm/s

Profile Deceleration (6084h)

This object specifies the acceleration rate for PP Mode and PV Mode.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6084h	0	Profile Deceleration	UINT32	RW	Yes	0 to 4294967295 Default: 200000 Unit: 0.1 rpm/s

Quick Stop Deceleration (6085h)

This object contains the deceleration rate that is used to stop the Motor if the *Quick Stop Option Code* (605Ah) is set to 2 and the Quick Stop command is given, or *Halt Option Code* (605Dh) is set to 2 and the Halt command is given.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6085h	0	Quick Stop Deceleration	UINT32	RW	Yes	0 to 4294967295 Default: 200000 Unit: 0.1 rpm/s

Motion Profile Type (6086h)

This object specifies the motion profile for the trajectory generator.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60861	0	Motion Profile Type	INT16	RW	Yes	0, 2 Default: 0

Value	Description
-32768 to -1	Not supported
0	Speed ramp (Trapezoidal profile)
1	Not supported
2	S-curve

Profile jerk (60A4h)

This object is regarded as the jerk in PP mode only if Motion Profile Type (6086h) is set to 2.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60A4h	0	Highest subindex supported	UINT8	RO	No	1

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	1	Profile jerk 1	UINT32	RW	No	0 to 4294967295 Default: 200000 Unit: 0.1 rpm/s

12.6 Homing Mode

Home Offset (607Ch)

This object contains the offset between the zero position for the application and the machine home position (found during homing).

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
607Ch	0	Home Offset	INT32	RW	Yes	-2147483648 to 2147483647

Homing Method (6098h)

This object specifies the homing method.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6098h	0	Homing Method	INT8	RW	Yes	Default: Pn720

Value	Description					
-128 to 0	Reserved for manufacturer					
1	Homing with the negative limit switch and index pulse					
2	Homing with the positive limit switch and index pulse					
3, 4	Homing with positive home switch and index pulse					
5, 6	Homing with negative home switch and index pulse					
7 to 14	Homing with home switch and index pulse					
17	Homing with the negative limit switch					
18	Homing with the positive limit switch					
19, 20	Homing with positive home switch					
21, 22	Homing with negative home switch					
23 to 30	Homing with home switch					
35	Homing on the current position					

Homing Speeds (6099h)

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Homing speeds	UINT8	RO	No	2
6099h	1	Speed during search for switch	UINT32	RW	Yes	0 to 4294967295 Default: Pn721 Unit: 0.1 rpm
	2	Speed during search for zero	UINT32	RW	Yes	0 to 4294967295 Default: Pn722 Unit: 0.1 rpm

NOTE: This value is limited by 607Fh and 6080h.

Homing Acceleration (609Ah)

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
609Ah	0	Home Acceleration	UINT32	RW	Yes	0 to 4294967295 Default: Pn723

12.7 Position Control Function

Position Demand Value (6062h)

This object specifies the current reference position in user position reference units.

This value is 0 in Velocity Mode.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6062h	0	Position Demand Value	INT32	RO	Yes	-2147483648 to 2147483647

Position Actual Internal Value (6063h)

This object gives the current feedback position in encoder pulse units.

- For the absolute encoder and the homing operation has been completed, this value represents the actual position value of the Motor encoder.
- For the incremental encoder or the homing operation has not been completed, this value represents the number of pulses (encoder units).

This value is 0 in Velocity Mode.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6063h	0	Position Actual Internal Value	INT32	RO	Yes	-2147483648 to 2147483647

Position Actual Value (6064h)

This object gives the current feedback position in user position reference units.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6064h	0	Position Actual Value	INT32	RO	Yes	-2147483648 to 2147483647

Following Error Window (6065h)

This object defines the detection range for the following error (bit 13 of statusword).

If the position deviation exceeds the following error window for the *following error time out* (6066h), bit13 in *statusword* changes to 1 to indicate following error.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6065h	0	Following Error Window	INT32	RW	Yes	-2147483648 to 2147483647

Following Error Time Out (6066h)

If the position deviation exceeds the *following error window* for the time specified in this object, bit-13 in *statusword* changes to 1 to indicate following error.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6066h	0	Following Error Time Out	UINT16	RW	Yes	0 to 65536 Unit: ms

Following Error Actual Value (60F4h)

This object provides the current following error.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60F4h	0	Following Error	INT32	RO	Yes	-2147483648 to 2147483647

Position Window (6067h)

This object defines the positioning completed width for the target position. When the Servo Drive has completed outputting the reference to the target position and the time specified in *position window time* (6068h) has passed after the distance between the target position and the position actual value is within the value of this object, bit-10 (target reached) in *statusword* changes to 1.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6067h	0	Position Window	UINT32	RW	Yes	0 to 4294967295

Position Window Time (6068h)

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6068h	0	Position Window Time	UINT16	RW	Yes	0 to 65536 Unit: ms

Position Demand Internal Value (60FCh)

This object gives the output of the trajectory generator during position control (the position that is input to the position loop). The value is given in encoder pulses.

This value is 0 in Velocity Mode.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60FCh	0	Position Demand Internal Value	INT32	RO	TxPDO	-2147483648 to 2147483647

12.8 Interpolated Position Mode

Interpolation sub mode select (60C0h)

This object is used to select the submode for the Interpolated Position Mode and Cyclic Sync Position Mode.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60C0h	0	Interpolation sub mode select	INT16	RW	No	-1, 0 Default: 0

Value	Description
-1	Cubic Interpolated
0	Linear Interpolated

Interpolation Data Record (60C1h)

This object gives the interpolation position reference for Interpolated Position Mode.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60C1h	0	Highest sub- index supported	UINT8	RO	No	2
	1	1st set-point	INT32	RW	Yes	-2147483648 to 2147483647

Interpolation Time Period (60C2h)

The Interpolation Time Period indicates the period of updating 607Ah or 60C1-01h. In the CSP or IP mode, if the DC synchronization mode is selected, the value must be the same as the DC synchronization period; and if the SM2 Event mode is selected, the value of 1C32-02h is consistent with the interpolation period and the actual SM2 Event period, otherwise Sync Error will occur.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Highest sub- index supported	UINT8	RO	No	2
60C2h	1	Interpolation time period value	INT32	RW	No	1 to 250 Default: 4
	2	Interpolation time index	INT8	RW	No	-6 to -3 Default: -3

NOTE: Interpolation time = (Interpolation time period (60C2h: 01)) \times 10^{Interpolation time index (60C2h: 02)} [s] The interpolation period must be an integer multiple of 125us and greater than 125us.

12.9 Cyclic Synchronous Position Mode

Velocity Offset (60B1h)

In Cyclic Synchronous Position Mode, this object contains the speed feedforward value.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60B1h	0	Velocity Offset	INT32	RW	Yes	-2147483648 to 2147483647 Default: 0

Torque Offset (60B2h)

In Cyclic Synchronous Position Mode or Cyclic Synchronous Velocity Mode, this object contains the torque feedforward value.

In Cyclic Synchronous Torque Mode, this object contains the offset value to add to the torque reference.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60B2h	0	Torque Offset	INT16	RW	Yes	-32768 to 32767 Default: 0 [0.1%]

12.10 Profile Velocity/Cyclic Synchronous Velocity Mode

Velocity sensor actual value (6069h)

This object contains the current speed from encoder.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6069h	0	Velocity sensor actual value	INT32	RO	Yes	-

Velocity Demand Value (606Bh)

This object contains the output value from the velocity trajectory generator or the output value from the position control function (i.e., the input reference for the speed loop).

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
606Bh	0	Velocity Demand value	INT32	RO	Yes	-

Velocity Actual Value (606Ch)

This object contains the Motor speed.

Inde	ex	Subindex	Name	Data Type	Access	PDO Mapping	Value
606	Ch	0	Velocity Actual value	INT32	RO	Yes	_

Velocity Window (606Dh)

This object sets the speed coincidence detection width.

When the time specified in *Velocity Window Time* (606Eh) has passed after the difference between the target speed and the *Velocity Actual Value* is within the setting of the *Velocity Window*, Bit10 in *Statusword* is set to 1.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
606Dh	0	Velocity Window	UINT16	RW	Yes	0 to 65535 Default: 0

Velocity Window Time (606Eh)

When the time specified in *Velocity Window Time* (606Eh) has passed after the difference between the target speed and the *Velocity Actual Value* is within the setting of the *Velocity Window*, Bit10 in *Statusword* is set to 1.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
606Eh	0	Velocity Window Time	UINT16	RW	Yes	0 to 65535 Default: 0

Velocity Threshold (606Fh)

When the time specified in Velocity Threshold Time (6070h) has passed after the *Velocity Actual Value* is greater than *Velocity Threshold* (606F), Bit12 in *Statusword* is set to 1.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
606Fh	0	Velocity Threshold	UINT16	RW	Yes	0 to 65535 Default: 0

Velocity Threshold Time (6070h)

When the time specified in Velocity Threshold Time (6070h) has passed after the *Velocity Actual Value* is greater than *Velocity Threshold* (606F), Bit12 in *Statusword* is set to 1.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6070h	0	Velocity threshold time	UINT16	RW	Yes	0 to 65535 Default: 0

Target Velocity (60FFh)

This object specifies the target speed for Profile Velocity Mode or Cyclic Synchronous Velocity Mode in user defined speed reference units.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60FFh	0	Target Velocity	INT32	RW	Yes	-2147483648 to 2147483647 Default: 0

12.11 Profile Torque / Cyclic Synchronous Torque Mode

Target Torque (6071h)

This object specifies the input torque reference value for Torque Control Mode. Set the value in units of 0.1% of the Motor rated torque.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6071h	0	Target Torque	INT16	RW	Yes	-32768 to 32768 Default: 0 [0.1%]

Torque Demand Value (6074h)

This object gives the currently output torque reference value. The value is given in units of 0.1% of the Motor rated torque.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6074h	0	Target Demand Value	INT16	RO	Yes	-

Torque Slope (6087h)

This object sets the torque output slope to use in Profile Torque Mode. Set the value as the rate of change per second (0.1%/s) in respect to the Motor rated torque.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6087h	0	Target Slope	UINT32	RW	Yes	0 to 4294967295 Default: 100

Torque Actual Value (6077h)

This object contains the torque reference output value.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6077h	0	Torque actual value	INT16	RO	Yes	-

12.12 Torque Limit Function

Max. Torque (6072h)

This object sets the maximum output torque for the Motor in PT mode. Set the value in units of 0.1% of the Motor rated torque.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
6072h	0	Max Torque	UINT16	RW	Yes	0 to 65535 Default: 3000

Positive Torque Limit Value (60E0h)

This object sets the positive torque limit. Set the value in units of 0.1% of the Motor rated torque.

The positive torque limit value is the smaller of 6072h and 60E0h.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60E0h	0	Positive Torque Limit Value	UINT16	RW	Yes	0 to 65535

Negative Torque Limit Value (60E1h)

This object sets the negative torque limit. Set the value in units of 0.1% of the Motor rated torque.

The negative torque limit value is the smaller of 6072h and 60E1h.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60E1h	0	Negative Torque Limit Value	UINT16	RW	Yes	0 to 65535

12.13 Digital Inputs/Outputs

Digital Inputs (60FDh)

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
60FDh	0	Digital Inputs	UINT32	RO	Yes	_

Bit	Signal	Description	
0	NOT	0: Switched off; 1: Switched on	
1	POT	0: Switched off; 1: Switched on	
2	Home switch	0: Switched off; 1: Switched on	
3 to 15	_	Reserved	
16	CN1-14	0: Switched off (Active); 1: Switched on (Inactive)	
17	CN1-15	0: Switched off (Active); 1: Switched on (Inactive)	

Bit	Signal	Description
18	CN1-16	0: Switched off (Active); 1: Switched on (Inactive)
19	CN1-17	0: Switched off (Active); 1: Switched on (Inactive)
20	CN1-18	0: Switched off (Active); 1: Switched on (Inactive)
21 to 35	_	Reserved

If the corresponding bit of Pn509 and Pn510 has been set to **Remote**, the input signal on CN1 terminal is only used as remote input IO, and the Drive will ignore its status.

Digital Outputs (60FEh)

This object controls the status of both general-purpose output signals and remote output signals from CN1 on the Drive. 60FE-01h is used to control the status of the output signals. 60FE-02h determines which output signals in subindex 1 are enabled.

The Bit16 to Bit19 in 60FE-01h can only assign to the general-purpose output signals on CN1, and set the *Bit mask* (60EF-02h) to 1 for enabling them. And then, according to the settings of Pn509 and Pn510 to allocate the desired signals, also you can choose whether to reverse them by the setting of Pn516 and Pn517.

For the bits transmitted on the bus, you also need to set Pn512 and Pn513 to enable it.

The Bit24 to Bit27 in 60FE-01h can assign to the remote output signals on CN1, and according to the setting of Pn511 to allocate the desired signals, using as a remote IO for the master station.

Index	Subindex	Name	Data Type	Access	PDO Mapping	Value
	0	Digital outputs	UINT8	RO	No	2
60FEh	1	Physical outputs	UINT32	RW	Yes	0 to 0xFFFFFFFF Default: 0
	2	Bit mask	UINT32	RW	Yes	0 to 0xFFFFFFF Default: 0

Bit	Signal	Description
0 to 15	-	Reserved
16	CN1-14	0: Switched off (Active), 1: Switched on (Inactive)
17	CN1-15	0: Switched off (Active), 1: Switched on (Inactive)
18	CN1-16	0: Switched off (Active), 1: Switched on (Inactive)
19	CN1-17	0: Switched off (Active), 1: Switched on (Inactive)
20	CN1-18	0: Switched off (Active), 1: Switched on (Inactive)
21 to 23	_	Reserved

Bit	Signal	Description
24	Remote0	0: Switched off (Active), 1: Switched on (Inactive)
25	Remote1	0: Switched off (Active), 1: Switched on (Inactive)
26 to 31	_	Reserved

12.14 Object Dictionary List

Group 1000h

Index	Subindex	Name	Data Type	Access	PDO Mapping	Unit	Range	Default	
	Pre-defined error field								
	00	Number of entries	UINT8	RO	No	-	-	_	
	01	Standard error field 1	UINT32	RO	No	_	-	-	
	02	Standard error field 2	UINT32	RO	No	_	-	_	
	03	Standard error field 3	UINT32	RO	No	-	-	_	
1003	04	Standard error field 4	UINT32	RO	No	-	_	_	
	05	Standard error field 5	UINT32	RO	No	ı	1	_	
	06	Standard error field 6	UINT32	RO	No	ı	1	_	
	07	Standard error field 7	UINT32	RO	No	_	-	_	
	08	Standard error field 8	UINT32	RO	No	-	-	_	
1009								Dependent on hardware version	
		Indicates the manufacturer's hardware version.							
100A								Dependent on software version	
		Indicates the manufacturer's software version.							
1010	Store parameters Indicates storage parameters								
1010	00	Highest sub-index supported	UINT8	RO	No	_	-	_	

Index	Subindex	Name	Data Type	Access	PDO Mapping	Unit	Range	Default		
	0.4	Reserved	UINT32	RO	No	_	_	-		
	01	Indicates to save all parameters.								
	02	Reserved	UINT32	RO	No	_	_	_		
	02	Indicates to save cor	Indicates to save communication parameters.							
	03	save application parameters	UINT32	RW	No	_	_	_		
	Identity Object Indicates information concerning the device.									
	00	Number of entries	UINT8	RO	No	_	_	_		
1018	01	Vender ID	UINT32	RO	No	-	_	-		
	02	Product code	UINT32	RO	No	-	_	_		
	03	Revision number	UINT32	RO	No	-	-	-		
	04	Serial number	UINT32	RO	No	-	-	-		
	The error	settings.				l				
	00									
	00	Indicates the number of entries for the object.								
10F1	01									
		The local error reaction.								
	02									
		Indicates a synchron	ous error co	ounter lim	nit. 					
10F8								Dependant on system time		
		Indicates the system	time.							
	1st Receive PDO Mapping									
	00	Number of entries	UINT8	RW	No	_	_	_		
	01	Mapping entry 1	UINT32	RW	No	_	_	_		
	02	Mapping entry 2	UINT32	RW	No	_	_	_		
1600	03	Mapping entry 3	UINT32	RW	No	_	_	_		
	04	Mapping entry 4	UINT32	RW	No	_	_	_		
	05	Mapping entry 5	UINT32	RW	No	_	_	_		
	06	Mapping entry 6	UwINT32	RW	No	_	_	-		
	07	Mapping entry 7	UINT32	RW	No	_	_	_		
	08	Mapping entry 8	UINT32	RW	No	_	_	-		

Index	Subindex	Name	Data Type	Access	PDO Mapping	Unit	Range	Default			
	09	Sets the 9th mapping 1600h:01h.	g object. Th	ne setting	instructions	are th	ne same	as those for			
	0A	Sets the 10th mapping 1600h:01h.	ng object. T	he settin	g instructio	ns are	the same	as those for			
	2nd Recei	ve PDO Mapping									
	00	Number of entries	UINT8	RW	No	-	_	_			
	01	Mapping entry 1	UINT32	RW	No	_	_	-			
	02	Mapping entry 2	UINT32	RW	No	-	_	-			
1601	03	Mapping entry 3	UINT32	RW	No	-	-	-			
1601	04	Mapping entry 4	UINT32	RW	No	-	-	-			
	05	Mapping entry 5	UINT32	RW	No	_	-	-			
	06	Mapping entry 6	UINT32	RW	No	_	-	_			
	07	Mapping entry 7	UINT32	RW	No	_	_	_			
	08	Mapping entry 8	UINT32	RW	No	-	_	-			
	3rd Receive PDO Mapping										
	00	Number of entries	UINT8	RW	No	_	-	-			
	01	Mapping entry 1	UINT32	RW	No	_	_	-			
	02	Mapping entry 2	UINT32	RW	No	_	_	-			
4702	03	Mapping entry 3	UINT32	RW	No	_	_	-			
1602	04	Mapping entry 4	UINT32	RW	No	_	_	-			
	05	Mapping entry 5	UINT32	RW	No	_	_	_			
	06	Mapping entry 6	UINT32	RW	No	_	_	_			
	07	Mapping entry 7	UINT32	RW	No	_	_	-			
	08	Mapping entry 8	UINT32	RW	No	_	_	-			
	4th Receiv	e PDO Mapping	I								
	00	Number of entries	UINT8	RW	No	_	_	-			
1403	01	Mapping entry 1	UINT32	RW	No	_	_	-			
1603	02	Mapping entry 2	UINT32	RW	No	_	_	_			
	03	Mapping entry 3	UINT32	RW	No	_	_	-			
	04	Mapping entry 4	UINT32	RW	No	_	_	_			

Index	Subindex	Name	Data Type	Access	PDO Mapping	Unit	Range	Default
	05	Mapping entry 5	UINT32	RW	No	_	_	-
	06	Mapping entry 6	UINT32	RW	No	_	_	_
	07	Mapping entry 7	UINT32	RW	No	_	-	_
	08	Mapping entry 8	UINT32	RW	No	_	-	_
	1st Receiv	e PDO Mapping		•		1		
	00	Number of entries	UINT8	RW	No	_	ı	_
	01	Mapping entry 1	UINT32	RW	No	-	-	_
	02	Mapping entry 2	UINT32	RW	No	_	_	_
1400	03	Mapping entry 3	UINT32	RW	No	-	_	-
1A00	04	Mapping entry 4	UINT32	RW	No	-	-	_
	05	Mapping entry 5	UINT32	RW	No	-	-	-
	06	Mapping entry 6	UINT32	RW	No	_	-	-
	07	Mapping entry 7	UINT32	RW	No	_	-	-
	08	Mapping entry 8	UINT32	RW	No	_	-	-
	2nd Transı	mit PDO Mapping						
	00	Number of entries	UINT8	RW	No	-	ı	1
	01	Mapping entry 1	UINT32	RW	No	_	_	_
	02	Mapping entry 2	UINT32	RW	No	_	_	_
1A01	03	Mapping entry 3	UINT32	RW	No	_	_	_
IAUI	04	Mapping entry 4	UINT32	RW	No	_	_	-
	05	Mapping entry 5	UINT32	RW	No	_	_	_
	06	Mapping entry 6	UINT32	RW	No	_	-	_
	07	Mapping entry 7	UINT32	RW	No	_	_	_
	08	Mapping entry 8	UINT32	RW	No	_	-	_
	3rd Transr	nit PDO Mapping						
	00	Number of entries	UINT8	RW	No	_	_	_
1A02	01	Mapping entry 1	UINT32	RW	No	-	-	_
IAUZ	02	Mapping entry 2	UINT32	RW	No	_	-	_
	03	Mapping entry 3	UINT32	RW	No	_	-	_
	04	Mapping entry 4	UINT32	RW	No	_	_	_

Index	Subindex	Name	Data Type	Access	PDO Mapping	Unit	Range	Default
	05	Mapping entry 5	UINT32	RW	No	_	-	_
	06	Mapping entry 6	UINT32	RW	No	_	-	-
	07	Mapping entry 7	UINT32	RW	No	_	_	_
	08	Mapping entry 8	UINT32	RW	No	_	_	-
	4thTransm	nit PDO Mapping						
	00	Number of entries	UINT8	RW	No	_	ı	_
	01	Mapping entry 1	UINT32	RW	No	-	-	-
	02	Mapping entry 2	UINT32	RW	No	_	-	_
4402	03	Mapping entry 3	UINT32	RW	No	-	-	-
1A03	04	Mapping entry 4	UINT32	RW	No	-	-	_
	05	Mapping entry 5	UINT32	RW	No	-	-	_
	06	Mapping entry 6	UINT32	RW	No	_	-	-
	07	Mapping entry 7	UINT32	RW	No	_	-	-
	08	Mapping entry 8	UINT32	RW	No	_	_	-
	Sync Mana	ger PDO assignment 2						
	00	Number of assigned PDOs	UINT8	RW	No	-	-	_
1C12	01	Index of assigned RxPDO 1	UINT16	RW	No	_	-	_
	02	Index of assigned RxPDO 2	UINT16	RW	No	_	-	_
	Sync Mana	ger PDO assignment 3						
	00	Number of assigned PDOs	UINT8	RW	No	-	ı	_
1C13	01	Index of assigned TxPDO 1	UINT16	RW	No	_	-	_
	02	Index of assigned TxPDO 2	UINT16	RW	No	_	-	_
	_	2 Synchronization						
	The sync p	parameters of Sync Ma	nagement 2	2. I				
1C32	00	Number of elements	UINT8	RO	No	_	-	_
1032		Indicates the numbe	r of entries	of the ob	oject.	T		
	01	Synchronization type	UINT16	RW	No	_	_	_
		Indicates the synchr	onization ty	pe.				

Index	Subindex	Name	Data Type	Access	PDO Mapping	Unit	Range	Default				
	02	Cycle time/ns	UINT16	RW	No	_	_	_				
	UZ	Indicates the cycle t	ime.									
	0.3											
	03	Indicates the shift ti	me.									
	04											
	04	Indicates the synchro	onization ty	pe suppo	rted.							
	05											
	03	Indicates the minimu	um cycle tin	ne.								
	06											
	00	Indicates the calculation and copy time.										
	08											
	00	Indicates the Get Cy	cle Time.									
	09											
	07	Indicates the delay t	ime.									
	0Ah											
	0711	Indicates the Sync0	cycle time.				T					
	0Bh											
	0511	Indicates the missed SM events.										
	0Ch											
	oc.,	The cycle time is too	short.			T	T					
	20h											
	2011	Indicates the synchro	onization er	ror.								
		3 Synchronization parameters of Sync Ma	ınagement 3	3.								
	00	Number of elements	UINT8	RO	No	_	_	_				
		Indicates the numbe	r of entries	of the ob	ject.							
1C33	01	Synchronization type	UINT16	RW	No	_	_	_				
		Indicates the synchro	onization ty	pe.								
	02	Cycle time/ns	UINT16	RW	No	-	_	_				
	02	Indicates the cycle t	ime.		•		•					
	0.3											
	03	Indicates the shift ti	me.		•							

Index	Subindex	Name	Data Type	Access	PDO Mapping	Unit	Range	Default					
	04h												
	0411	Indicates the synchro	onization ty	pe suppo	rted.								
	05h												
	USII	Indicates the minimum cycle time.											
	06h												
	OOH	Indicates the calcula	dicates the calculation and copy time.										
	08h												
	0011	Indicates the Get Cy	cle Time.	T		r	T						
	09h												
	0711	Indicates the delay time.											
	0Ah												
	UAI1	Indicates the Sync0	cycle time.										
	0Bh												
	0511	Indicates the missed	SM events.			T							
	0Ch												
	0011	The cycle time is too	short.				T						
	20h												
	2011	Indicates the synchro	onization er	ror.									

Group 3000h

Inde x	Paramet er	Name	Data Type	Acces s	PDO Mappin g	Unit	Range	Defau lt
30A5	_	SinglePos	DINT	RO	No	_	_	_
30A6	_	MultiPos	UDIN T	RO	No	_	-	-
30A8	-	ExtEncoderPositi on	INT3 2	RO	Yes	1 pulse	$-2^{31} \sim (2^{31}-1)$	_
3164	Pn000	Basic Function Selections 0	INT3 2	RW	No	_	0000 to 0111	0000
3165	Pn001	Basic Function Selections 1	INT3 2	RW	No	_	0000 to 0001	0000
3166	Pn002	Application Function Selections 2	INT3 2	RW	No	-	0000 to 0100	0000

Inde x	Paramet er	Name	Data Type	Acces s	PDO Mappin g	Unit	Range	Defau lt
3167	Pn003	Application Function Selections 3	INT3 2	RW	No	-	0000 to 1032	0000
3168	Pn004	Application Function Selections 4	INT3 2	RW	No	_	0000 to 0025	0000
3169	Pn005	Application Function Selections 5	INT3 2	RW	No	-	00d0 to 33d3	00d0
316A	Pn006	Application Function Selections 6	INT3 2	RW	No		0000 to 0001	0001
316B	Pn007	Application Function Selections 7	INT3 2	RW	No	-	0000 to 1120	0010
316C	Pn008	Initial Display Selection When Power On	INT3 2	RW	No	-	0 to 9999	0010
316D	Pn009	Application Function Selections 9	INT3 2	RW	No	-	0000 to 0001	0000
31C8	Pn100	Tuning Function	INT3 2	RW	No	-	0001 to 1105	0001
31C9	Pn101	Servo Rigidity	INT3 2	RW	No	Hz	0 to 500	40
31CA	Pn102	Speed Loop Gain	INT3 2	RW	No	rad/s	1 to 10000	500
31CB	Pn103	Speed Loop Integral Time	INT3 2	RW	No	0.1ms	1 to 5000	125
31CC	Pn104	Position Loop Gain	INT3 2	RW	No	1/s	0 to 1000	40
31CD	Pn105	Torque Command Filter Time	INT3 2	RW	No	0.01ms	0 to 2500	50
31CE	Pn106	Load Inertia Percentage	INT3 2	RW	No	%	0 to 9999	0
31CF	Pn107	Second Speed Loop Gain	INT3 2	RW	No	rad/s	1 to 10000	250
31D0	Pn108	Second Speed Loop Integral Time	INT3 2	RW	No	rad/s	1 to 5000	200
31D1	Pn109	Second Position Loop Gain	INT3 2	RW	No	1/s	0 to 1000	40

Inde x	Paramet er	Name	Data Type	Acces s	PDO Mappin g	Unit	Range	Defau lt
31D2	Pn110	Second Torque Reference Filter Time	INT3 2	RW	No	0.01ms	0 to 2500	100
31D4	Pn112	Speed Feedforward	INT3 2	RW	No	%	0 to 100	0
31D5	Pn113	Speed Feedforward Filter Time	INT3 2	RW	No	0.1ms	0 to 640	0
31D6	Pn114	Torque Feedforward	INT3 2	RW	No	%	0 to 100	0
31D7	Pn115	Torque Feedforward Filter Time	INT3 2	RW	No	0.1ms	0 to 640	0
31D8	Pn116	P/PI Switch Mode	INT3 2	RW	No	-	0 to 4	0
31D9	Pn117	Torque Reference Threshold for P/PI Switch	INT3	RW	No	%	0 to 300	200
31DA	Pn118	Deviation Counter Threshold for P/PI Switch	INT3 2	RW	No	1 pulse	0 to 10000	0
31DB	Pn119	Acceleration Reference Threshold for P/PI Switch	INT3 2	RW	No	10 rpm/s	0 to 3000	0
31DC	Pn120	Speed Reference Threshold for P/PI Switch	INT3 2	RW	No	rpm	0 to 10000	0
31DD	Pn121	Gain Switch Mode	INT3 2	RW	No	-	0 to 10	0
31DE	Pn122	Delay Time for Gain Switch	INT3 2	RW	No	0.1 ms	0 to 20000	0
31DF	Pn123	Threshold for Gain Switch	INT3 2	RW	No	-	0 to 20000	0
31E0	Pn124	Speed Threshold for Gain Switch	INT3 2	RW	No	rpm	0 to 2000	0
31E1	Pn125	Ramp Time for Position Loop Gain Switch	INT3 2	RW	No	0.1 ms	0 to 20000	0
31E2	Pn126	Hysteresis for Gain Switch	INT3 2	RW	No	-	0 to 20000	0
31E3	Pn127	Low Speed Filter	INT3 2	RW	No	1 cycle	0 to 100	0

Inde x	Paramet er	Name	Data Type	Acces s	PDO Mappin g	Unit	Range	Defau lt
31E6	Pn130	Coulomb Friction Compensation	INT3 2	RW	No	0.1%Tn	0 to 3000	0
31E7	Pn131	Speed Dead Band for Coulomb Friction Compensation	INT3 2	RW	No	rpm	0 to 100	0
31E8	Pn132	Viscous Friction Compensation	INT3 2	RW	No	0.1%Tn/1000r pm	0 to 1000	0
31EB	Pn135	Encoder Speed Filter Time	INT3 2	RW	No	0.01ms	0 to 30000	4
31FA	Pn150	Model Following Control Function	INT3 2	RW	No	_	0000 to 0002	0000
31FB	Pn151	Model Following Control Gain	INT3 2	RW	No	1/s	10 to 1000	50
31FC	Pn152	Model Following Control Gain Correction	INT3 2	RW	No	%	20 to 500	100
31FD	Pn153	Model Following Control Speed Feedforward	INT3 2	RW	No	%	0 to 200	100
31FE	Pn154	Model Following Control Torque Feedforward	INT3 2	RW	No	%	0 to 200	100
31FF	Pn155	Load Oscillation Frequency	INT3 2	RW	No	0.1 Hz	50 to 500	100
3200	Pn156	Filter Time for Load Oscillation Suppression	INT3 2	RW	No	0.1 ms	2 to 500	10
3201	Pn157	Limit for Load Oscillation Suppression	INT3 2	RW	No	rpm	0 to 1000	100
3204	Pn160	Load Torque Compensation	INT3 2	RW	No	%	0 to 100	0
3205	Pn161	Load Torque Observer Gain	INT3 2	RW	No	Hz	0 to 1000	200
3206	Pn162	Feedback Speed Selection	INT3 2	RW	No	-	0 to 1	0
3208	Pn164	Turns for PJOG0	INT3 2	RW	No	rotation	-50 to 50	5
3209	Pn165	Max Speed for PJOG0	INT3 2	RW	No	rpm	100 to 3000	1000
320A	Pn166	Acc./Dec. Time for PJOG0	INT3 2	RW	No	ms	50 to 2000	500

Inde x	Paramet er	Name	Data Type	Acces s	PDO Mappin g	Unit	Range	Defau lt
320B	Pn167	Stop Time for PJOG0	INT3 2	RW	No	ms	100 to 10000	1000
320C	Pn168	Turns for PJOG1	INT3 2	RW	No	rotation	-50 to 50	5
320D	Pn169	Max Speed for PJOG1	INT3 2	RW	No	rpm	100 to 3000	1000
320E	Pn170	Acc./Dec. Time for PJOG1	INT3 2	RW	No	ms	50 to 2000	500
320F	Pn171	Stop Time for PJOG1	INT3 2	RW	No	ms	100 to 10000	1000
3210	Pn172	Turns for Inertia Identification	INT3 2	RW	No	-	0 to 1	0
3211	Pn173	Frequency of Vibration Suppression Filter	INT3 2	RW	No	Hz	100 to 2000	2000
3212	Pn174	Adjust Bandwidth of Vibration Suppression Filter	INT3 2	RW	No	-	1 to 100	30
3213	Pn175	Vibration Suppression	INT3 2	RW	No	-	0 to 500	100
3214	Pn176	Lowpass Filter Time for Vibration Suppression	INT3 2	RW	No	0.1 ms	0 to 50	0
3215	Pn177	Highpass Filter Time for Vibration Suppression	INT3 2	RW	No	0.1 ms	0 to 1000	1000
3216	Pn178	Damping of Vibration Suppression Filter	INT3 2	RW	No	-	0 to 500	100
3217	Pn179	Amplitude Threshold for Vibration Detection	INT3 2	RW	No	_	5 to 500	100
3218	Pn180	Frequency Threshold for Vibration Detection	INT3 2	RW	No	_	0 to 100	100
3219	Pn181	Frequency of Notch Filter 1	INT3 2	RW	No	Hz	50 to 5000	5000

Inde x	Paramet er	Name	Data Type	Acces s	PDO Mappin g	Unit	Range	Defau lt
321A	Pn182	Depth of Notch Filter 1	INT3 2	RW	No	-	0 to 23	0
321B	Pn183	Width of Notch Filter 1	INT3 2	RW	No	-	0 to 15	2
321C	Pn184	Frequency of Notch Filter 2	INT3 2	RW	No	Hz	50 to 5000	5000
321D	Pn185	Depth of Notch Filter 2	INT3 2	RW	No	-	0 to 23	0
321E	Pn186	Width of Notch Filter 2	INT3 2	RW	No	-	0 to 15	2
321F	Pn187	Frequency of Notch Filter 3	INT3 2	RW	No	Hz	50 to 5000	5000
3220	Pn188	Depth of Notch Filter 3	INT3 2	RW	No	-	0 to 23	0
3221	Pn189	Width of Notch Filter 3	INT3 2	RW	No		0 to 15	2
322C	Pn200	Pulse Numbers for PG Frequency Division	INT3 2	RW	No	1 pulse	16 to 16384	16384
3236	Pn210	External Encoder Setting 1	INT3 2	RW	No	-	0000 to 1111	0000
3237	Pn211	External Encoder Setting 2	INT3 2	RW	No	-	0000 to 0001	0001
3238	Pn212	Resolution of External Encoder	INT3 2	RW	No	1 pulse	1 to 2 ²⁰	10000
3239	Pn213	Position Deviation Threshold between Encoder and External Encoder	INT3 2	RW	No	1 pulse	0 to 2 ²⁷	1000
323A	Pn214	Position Deviation Clear between Encoder and External Encoder	INT3 2	RW	No	%	0 to 100	0
3294	Pn304	Inner Speed Reference	INT3 2	RW	No	rpm	-6000 to 6000	500
3295	Pn305	Jogging Speed	INT3 2	RW	No	rpm	0 to 6000	500
3296	Pn306	Soft Start Acceleration Time	INT3 2	RW	No	ms	0 to 10000	0

Inde x	Paramet er	Name	Data Type	Acces s	PDO Mappin g	Unit	Range	Defau lt
3297	Pn307	Soft Start Deceleration Time	INT3 2	RW	No	ms	0 to 10000	0
3298	Pn308	Speed Reference Filter Time	INT3 2	RW	No	ms	0 to 10000	0
3299	Pn309	S-Curve Rise Time	INT3 2	RW	No	ms	0 to 10000	0
329A	Pn310	Speed Reference Smooth Mode Selection	INT3 2	RW	No	-	0 to 3	0
329B	Pn311	S-Curve Selection	INT3 2	RW	No	_	0 to 3	0
32A7	Pn323	Overspeed Detection Threshold	INT3 2	RW	No	-	1 to 8000	8000
32AF	Pn331	Touch Probe Signal Allocation	INT3 2	RW	No		0000 to 0022	0010
32B0	Pn332	Touch Probe Digital Input Filtering Time	INT3 2	RW	No	10ns	0 to 1000	0
32B1	Pn333	Touch probe Signal Inverts	INT3 2	RW	No	-	0000 to 0011	0000
32F5	Pn401	Forward Internal Torque Limit	INT3 2	RW	No	%	0 to 350	350
32F6	Pn402	Reverse Internal Torque Limit	INT3 2	RW	No	%	0 to 350	350
32F7	Pn403	Forward External Torque Limit	INT3 2	RW	No	%	0 to 350	100
32F8	Pn404	Reverse External Torque Limit	INT3 2	RW	No	%	0 to 350	100
32F9	Pn405	Reverse Brake Torque Limit	INT3 2	RW	No	%	0 to 350	300
32FA	Pn406	Torque Limit at Main Circuit Voltage Drop	INT3 2	RW	No	%	0 to 100	50
32FB	Pn407	Release Time for Torque Limit at Main Circuit Voltage Drop	INT3 2	RW	No	ms	0 to 1000	100
32FC	Pn408	Speed Limit during Torque Control	INT3 2	RW	No	rpm	0 to 6000	1500
3358	Pn500	Position Arrival Tolerance	INT3 2	RW	No	1 pulse	0 to 50000	10

Inde x	Paramet er	Name	Data Type	Acces s	PDO Mappin g	Unit	Range	Defau lt
3359	Pn501	Speed Arrival Tolerance	INT3 2	RW	No	rpm	0 to 100	0
335B	Pn503	Rotation Status Detection Threshold	INT3 2	RW	No	rpm	0 to 3000	20
335C	Pn504	Position Deviation Counter Overflow Threshold	INT3 2	RW	No	1 pulse	1 to 10*2 ²³	-
335D	Pn505	Servo ON Waiting Time	INT3 2	RW	No	ms	-2000 to 2000	0
335E	Pn506	Servo OFF Waiting Time	INT3 2	RW	No	10 ms	0 to 500	0
335F	Pn507	Brake Enable Speed Threshold	INT3 2	RW	No	rpm	10 to 100	100
3360	Pn508	Brake Enable Waiting Time	INT3 2	RW	No	10 ms	10 to 100	50
3361	Pn509	Digital Input Signal Allocations 1	INT3 2	RW	No	_	0000 to 7777	3210
3362	Pn510	Digital Input Signal Allocations 2	INT3 2	RW	No	-	0000 to 0007	0004
3363	Pn511	Digital Output Signal Allocations	INT3 2	RW	No	_	0000 to 0bbb	0210
3364	Pn512	Digital Input Signals (Low Bits) from Bus Master	INT3 2	RW	No	_	0000 to 1111	0000
3365	Pn513	Digital Input Signals (High Bits) from Bus Master	INT3 2	RW	No	_	0000 to 1111	0000
3366	Pn514	Digital Input Signals Filter Time	INT3 2	RW	No	1 cycle	0 to 1000	1
3367	Pn515	Alarm Output Signal Filter Time	INT3 2	RW	No	2 cycle	0 to 3	1
3368	Pn516	Digital Input Signal Inverts 1	INT3 2	RW	No	-	0000 to 1111	0000
3369	Pn517	Digital Input Signal Inverts 2	INT3 2	RW	No	-	0000 to 0001	0000

Inde x	Paramet er	Name	Data Type	Acces s	PDO Mappin g	Unit	Range	Defau lt
336A	Pn518	Dynamic Braking Time	INT3 2	RW	No	0.5ms	50 ~ 20000	20000
336B	Pn519	Serial Encoder Communication Error Tolerance	INT3 2	RW	No	1 cycle	0 to 10000	3
336C	Pn520	Position Arrival Status Detection Time Threshold	INT3 2	RW	No	0.1 ms	0 to 60000	500
336D	Pn521	Alarm Masks	INT3 2	RW	No	-	0000 to 0011	0000
3371	Pn525	Motor Overload Detection Start Threshold	INT3 2	RW	No	%	100 to 150	100
3374	Pn528	Digital Output Signal Inverts	INT3 2	RW	No	-	0000 to 1111	0000
3375	Pn529	Torque Reaches Status Detection Torque Threshold	INT3 2	RW	No	%	3 to 300	100
3376	Pn530	Torque Reaches Status Detection Time Threshold	INT3 2	RW	No	ms	1 to 1000	10
3379	Pn533	Current Threshold when DB Brake Circuit is Damaged	INT3 2	RW	No	m A	1 ~ 99 99	300
337A	Pn534	Alarm Threshold in case of Excessive IPM Junction Temperature	INT3 2	RW	No	°C	1 - 20 0	135
337B	Pn535	Discharging Resistor Resistance	INT3 2	RW	No	Ω	10 to 300	-
337C	Pn536	Discharging Resistor Power	INT3 2	RW	No	w	0 to 2000	_
337E	Pn538	Momentary Power Interruption Hold Time	INT3 2	RW	No	1 cycle	0 to 50	1
337F	Pn539	Pump-up Opening Delay Time	INT3 2	RW	No	ms	0 ~ 100	4

Inde x	Paramet er	Name	Data Type	Acces s	PDO Mappin g	Unit	Range	Defau lt
3380	Pn540	Pump-up Closing Delay Time	INT3 2	RW	No	ms	0 ~ 100	4
33BC	Pn600	PSO Position Value Resolution	INT3 2	RW	No	_	0 ~ 10	7
33BD	Pn601	PSO Mode Comparison	INT3 2	RW	No	_	b0000 ~ b0011	0
33BE	Pn602	PSO Output Polarity	INT3 2	RW	No	_	0 ~ 1	0
33BF	Pn603	PSO Output Form	INT3 2	RW	No	-	0 ~ 1	0
33C0	Pn604	PSO Output Pulse Width	INT3 2	RW	No		0 ~ 10000	100
33C1	Pn605	Delay Compensation Time	INT3 2	RW	No	us	0 ~ 200	0
33C2	Pn606	PSO Origin Bias	INT3 2	RW	No	us	-2147483648 ~ 2147483647	0
33C3	Pn607	PSO Starting Point	INT3 2	RW	No	pulse	1~8	1
33C4	Pn608	PSO Ending Point	INT3 2	RW	No	-	1~20	8
33C5	Pn609	Attribute of PSO1 Comparison Point 1	INT3 2	RW	No		0~6	0
33C6	Pn610	Target Position of PSO1 Comparison Point 1	INT3 2	RW	No	_	-2147483648 ~ 2147483647	0
33C7	Pn611	Attribute of PSO1 Comparison Point 2	INT3 2	RW	No	_	0~6	0
33C8	Pn612	Target Position of PSO1 Comparison Point 2	INT3 2	RW	No	_	-2147483648 ~ 2147483647	0
33C9	Pn613	Attribute of PSO1 Comparison Point 3	INT3 2	RW	No	_	0~6	0
33CA	Pn614	Target Position of PSO1 Comparison Point 3	INT3 2	RW	No	_	-2147483648 ~ 2147483647	0
33CB	Pn615	Attribute of PSO1 Comparison Point 4	INT3 2	RW	No	_	0~6	0

Inde x	Paramet er	Name	Data Type	Acces s	PDO Mappin g	Unit	Range	Defau lt
33CC	Pn616	Target Position of PSO1 Comparison Point 4	INT3 2	RW	No			0
33CD	Pn617	Attribute of PSO1 Comparison Point 5	INT3 2	RW	No	_	0~6	0
33CE	Pn618	Target Position of PSO1 Comparison Point 5	INT3 2	RW	No	_	-2147483648 ~ 2147483647	00
33CF	Pn619	Attribute of PSO1 Comparison Point 6	INT3 2	RW	No		0~6	0
33D0	Pn620	Target Position of PSO1 Comparison Point 6	INT3 2	RW	No	_	-2147483648 ~ 2147483647	0
33D1	Pn621	Attribute of PSO1 Comparison Point 7	INT3 2	RW	No		0-6	0
33D2	Pn622	Target Position of PSO1 Comparison Point 7	INT3 2	RW	No		-2147483648 ~ 2147483647	0
33D3	Pn623	Attribute of PSO1 Comparison Point 8	INT3 2	RW	No	_	0~6	0
33D4	Pn624	Target Position of PSO1 Comparison Point 8	INT3 2	RW	No	_	-2147483648 ~ 2147483647	0
3424	Pn704	Device Node Number	INT3 2	RW	No	-	0 to 127	1
3434	Pn720	Homing Method	INT3 2	RW	No	-	1 to 35	1
3435	Pn721	Speed during Search for Switch	INT3 2	RW	No	0.1 rpm	1 to 2147483647	5000
3436	Pn722	Speed during Search for Zero	INT3 2	RW	No	0.1 rpm	1 to 2147483647	100
3437	Pn723	Homing Acceleration	INT3 2	RW	No	0.1 rpm/s	1 to 2147483647	100
3438	Pn724	Home Offset	INT3 2	RW	No	1 pulse	-2147483648 to 2147483647	0

Inde x	Paramet er	Name	Data Type	Acces s	PDO Mappin g	Unit	Range	Defau lt	
3439	Pn725	Electronic Gear Ratio (Numerator)	INT3 2	RW	No	-	1 to 1073741824	1	
343A	Pn726	Electronic Gear Ratio (Numerator)	INT3 2	RW	No	-	1 to 1073741824	1	
	Clear the	encoder alarm.							
	001-								
	00h	The number of entr	ries of t	the obje	ct.				
3685 h	01h								
	OIII	Clear all encoder a	larms.						
	02h								
	02	Clear the multi-tur	n alarm	1.					
2000									
		bit Description							
30B0 h		0 Compare ou	utput e	nable					
		1 Set the origin							
		2 Adjust current position in a single time							
30B1 h		PSO1 Current Position Adjusting Value							
		The adjusting value of current position value of PSO1.							
		bit Description		l	l			1	
30C0 h		0 Comparisor	outpu	t in prog	ress				
		1 Origin setti	ng done	e					
		2 Single adju	stment	of curre	ent positio	n done			
30C1 h		PSO1 Current Satus Target Comparison Point							
30C2 h		The current position of PSO1							

Group 6000h

Group					1						
Index	Subindex	Name	Data Type	Access	PDO Mapping	Unit	Range	Default			
		Error code	UINT16	RW	Yes	_	_	_			
603F	00	Indicates the alar 0x0050 is display		of the driv	e. For yje e	ncoder disconn	ection aları	m,			
		Control word	UINT16	RW	Yes	_	_	_			
6040	00	Each bit of the Controlword in CST mode is defined by default.									
		See the description of Controlword in "7.2 Device Control" for details.									
		Status word	UINT16	RO	Yes	-	_	_			
6041	00	bit13、bit12、bit10 (operation mode specific): The definitions differ in the following control modes.									
605A	00	Quick stop option code	INT16	RW	No	-	_	_			
605B	00	Shutdown option code	INT16	RW	No	-	-	-			
605C	00	Disable operation option code	INT16	RW	No	-		-			
605D	00	Stop option code	INT16	RW	No	-	_	_			
605E	00	Fault reaction option code	UINT16	RW	No	-	_	-			
6060	00	Modes of operation	INT8	RW	Yes	_	_	_			
6061	00	Modes of operation display	INT8	RO	Yes	_	_	_			
6062	00	Position demand value	INT32	RO	Yes	position units	_	_			
6063	00	Position actual value	INT32	RO	Yes	inc	-	_			
0003	00	Indicates the actual position of the motor upon conversion by the position command unit (electronic gear ratio).									
6064	00	Position actual value	INT32	RO	Yes	position units	_	-			
6065	00	Following error window	UINT32	RW	Yes	position units	_	-			
0003	00	If the value of the judgement will b									
6066	00	Following error time out	UINT16	RW	Yes	ms	_	_			
6067	00	Position window	UINT32	RW	Yes	position units		_			

Index	Subindex	Name	Data Type	Access	PDO Mapping	Unit	Range	Default	
		If the value of th judgement will b						letion	
6068	00	Position window time	UINT16	RW	Yes	ms	_	_	
6069	00	Velocity sensor actual value	UINT16	RW	Yes	speed units	-	_	
606B	00	Velocity demand value	INT32	RO	Yes	speed units	_	_	
606C	00	Velocity actual value	INT32	RO	Yes	speed units	_	_	
606D	00	Velocity window	UINT16	RW	Yes	speed units	-	_	
606E	00	Velocity window time	UINT16	RW	Yes	ms	-	_	
606F	00	Velocity threshold	UINT16	RW	Yes	speed units	-	_	
6070	00	Velocity threshold time	UINT16	RW	Yes	ms		-	
6071	00	Target Torque	INT16	RW	Yes	-	_	_	
6072	00	Max Torque	UINT16	RW	Yes	-	_	_	
6074		Indicates the tor	que commai	nd that has	been ente	red under servo	enable.	<u>.</u>	
6077	00	Torque actual value	INT16	RO	Yes	-	_	_	
6078	00	Current actual value	INT16	RO	Yes	-	-	_	
607A	00	Target position	INT32	RW	Yes	_	_	_	
607C	00	Home offset	INT32	RW	Yes	_	_	_	
	Software F	Position Limit							
	00	Number of entries	UINT8	RO	No	-	-	_	
607D	01	Min position limit	INT32	RW	No	position units	-	_	
	02	Max position limit	INT32	RW	No	position units	-	-	
607E	00	Polarity	USINT	RW	No	_	_	_	
607F	00	Max profile velocity	UINT32	RW	Yes	speed units	_	_	
6080		Sets the maximum speed to be read from the motor.							
6081	00	Profile velocity	UINT32	RW	Yes	speed units	_	_	

Index	Subindex	Name	Data Type	Access	PDO Mapping	Unit	Range Defaul	
6082	00	End velocity	UINT32	RW	Yes	speed units	_	-
6083	00	Profile acceleration	UINT32	RW	Yes	acceleration units	_	-
6084	00	Profile deceleration	UINT32	RW	Yes	acceleration units	-	-
6085	00	Quick stop deceleration	UINT32	RW	Yes	acceleration units	_	_
6086	00	Motion profile type	INT16	RO	Yes	-	-	-
6087	00	Torque Slope	UINT32	RW	Yes	-	_	-
	Position fa	ctor						
6093	00	Number of entries	UINT32	RW	No	-	_	_
	01	numerator	UINT32	RW	No	-	_	-
	02	divisor	UINT32	RW	No	-	-	-
Velocity encoder factor								
6094	00	Number of entries	UINT32	RW	No	-	_	_
	01	numerator	UINT32	RW	No		_	-
	02	divisor	UINT32	RW	No	_	_	-
	Accelerati	on factor						
6097	00	Number of entries	UINT32	RW	No	-	_	-
	01	numerator	UINT32	RW	No	_	_	_
	02	divisor	UINT32	RW	No	_	_	-
6098	00	Homing method	INT8	RW	Yes	-	_	_
	Homing sp	eeds						
	00	Number of entries	UINT8	RW	Yes	-	_	_
6099	01	Speed during search for switch	UINT32	RW	Yes	speed units	_	-
	02	Speed during search for zero	UINT32	RW	Yes	speed units	_	-
60C0								

Index	Subindex	Name		Data Type	Access	PDO Mapping	Unit	Range	Default		
		Indicates	ndicates the interpolation method selection in IP mode:								
		Value	Defini	Definition							
		0 Linear interpolation。									
		1 Cubic interpolation。									
60F4											
00F4		Indicates	icates a real-time position following error.								

Revision History

Date	Version	Revised Contents	
Aug 2022	V0.01	Initial release (DRAFT)	

Trio Motion Technology Limited

www.triomotion.uk